期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:455 |
Strict and pointwise convergence of BV functions in metric spaces | |
Article | |
Lahti, Panu1  | |
[1] Univ Cincinnati, Dept Math Sci, 4199 French Hall West,2815 Commons Way, Cincinnati, OH 45221 USA | |
关键词: Metric measure space; Bounded variation; Strict convergence; Pointwise convergence; Uniform convergence; Codimension one Hausdorff measure; | |
DOI : 10.1016/j.jmaa.2017.06.010 | |
来源: Elsevier | |
【 摘 要 】
Consider a metric space X that is equipped with a doubling measure and supports a Poincare inequality. We show that if u(i) -> u strictly in BV(X), i.e. if u(i) -> u in L-1(X) and parallel to Du(i)parallel to(X) -> parallel to Du parallel to(X), then for a subsequence (not relabeled) we have (u) over tilde (i)(x) -> (u) over tilde (x) for H-almost every x is an element of X \ S-u. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2017_06_010.pdf | 396KB | download |