期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:455
Strict and pointwise convergence of BV functions in metric spaces
Article
Lahti, Panu1 
[1] Univ Cincinnati, Dept Math Sci, 4199 French Hall West,2815 Commons Way, Cincinnati, OH 45221 USA
关键词: Metric measure space;    Bounded variation;    Strict convergence;    Pointwise convergence;    Uniform convergence;    Codimension one Hausdorff measure;   
DOI  :  10.1016/j.jmaa.2017.06.010
来源: Elsevier
PDF
【 摘 要 】

Consider a metric space X that is equipped with a doubling measure and supports a Poincare inequality. We show that if u(i) -> u strictly in BV(X), i.e. if u(i) -> u in L-1(X) and parallel to Du(i)parallel to(X) -> parallel to Du parallel to(X), then for a subsequence (not relabeled) we have (u) over tilde (i)(x) -> (u) over tilde (x) for H-almost every x is an element of X \ S-u. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_06_010.pdf 396KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次