期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:411
Besov and Triebel-Lizorkin spaces associated with non-negative self-adjoint operators
Article
Hu, Guorong
关键词: Besov space;    Triebel-Lizorkin space;    Metric measure space;    Heat kernel;    Peetre maximal function;    Atom;   
DOI  :  10.1016/j.jmaa.2013.10.011
来源: Elsevier
PDF
【 摘 要 】

Let (X, rho) be a locally compact metric space endowed with a doubling measure mu, and L be a non-negative self-adjoint operator on L-2(X, d mu). Assume that the semigroup P-t = e(-tL) generated by L consists of integral operators with (heat) kernel p(t)(x, y) enjoying Gaussian upper bound but having no information on the regularity in the variables x and y. In this paper, we introduce Besov and Triebel-Lizorkin spaces associated with L, and present an atomic decomposition of these function spaces. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_10_011.pdf 434KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次