期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:473 |
Spectral properties of self-similar measures with product-form digit sets | |
Article | |
Liu, Jing-Cheng1  Peng, Rong-Gui1  Wu, Hai-Hua2  | |
[1] Hunan Normal Univ, Sch Math & Stast, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China | |
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China | |
关键词: Iterated function system; Self-affine measure; Spectral measure; Translational tile; | |
DOI : 10.1016/j.jmaa.2018.12.062 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we consider the spectral properties of self-similar measures mu(R,D) generated by the integer R = N-q and the product-form digit set D = {0, 1, . . . ,N - 1}circle plus N-P {0, 1, . . . , N - 1}, where the integers q, p >= 1 and N >= 2. We show that mu(R,D) is a spectral measure if and only if q inverted iota p. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2018_12_062.pdf | 354KB | download |