期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:432
Non-spectrality of self-affine measures on the spatial Sierpinski gasket
Article
Li, Jian-Lin
关键词: Self-affine measure;    Orthogonal exponentials;    Non-spectrality;    Sierpinski gasket;   
DOI  :  10.1016/j.jmaa.2015.07.032
来源: Elsevier
PDF
【 摘 要 】

Let mu(M,D) be the self-affine measure corresponding to a diagonal matrix M with entries p(1),p(2),p(3) is an element of Z \ {0, +/- 1} and D = {0, e(1), e(2), e(3)} in the space R-3, where e(1), e(2), e(3) are the standard basis of unit column vectors in R-3. Such a measure is supported on the spatial Sierpinski gasket. In this paper, we prove the non-spectrality of mu(M,D). By characterizing the zero set Z((mu) over cap (M,D)) of the Fourier transform (mu) over cap (M,D), we obtain that if p(1) is an element of 2Z and p(2),p(3) is an element of 2Z + 1, then mu(M,D) is a non-spectral measure, and there are at most a finite number of orthogonal exponential functions in L-2(mu(M,D)). This completely solves the problem on the finiteness or infiniteness of orthogonal exponentials in the Hilbert space L-2(mu(M,D)). (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_07_032.pdf 358KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次