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Let μM,D be the self-affine measure corresponding to a diagonal matrix M with 
entries p1, p2, p3 ∈ Z \{0, ±1} and D = {0, e1, e2, e3} in the space R3, where e1, e2, e3
are the standard basis of unit column vectors in R3. Such a measure is supported on 
the spatial Sierpinski gasket. In this paper, we prove the non-spectrality of μM,D. 
By characterizing the zero set Z(μ̂M,D) of the Fourier transform μ̂M,D , we obtain 
that if p1 ∈ 2Z and p2, p3 ∈ 2Z + 1, then μM,D is a non-spectral measure, and 
there are at most a finite number of orthogonal exponential functions in L2(μM,D). 
This completely solves the problem on the finiteness or infiniteness of orthogonal 
exponentials in the Hilbert space L2(μM,D).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let M ∈ Mn(Z) be an expanding integer matrix and D ⊂ Z
n be a finite digit set of the cardinality |D|. 

Associated with M and D, it is known [7] that here exists a unique probability measure μ := μM,D satisfying

μ = 1
|D|

∑
d∈D

μ ◦ φ−1
d , (1.1)

such a measure is called self-affine measure and is supported on the compact set T ⊂ R
n, where 

T := T (M, D) is the attractor (or invariant set) of the affine iterated function system (IFS) {φd(x) =
M−1(x + d)}d∈D. The measure μM,D is called spectral if there exists a set Λ ⊂ R

n such that E(Λ) :=
{eλ(x) = e2πi〈λ,x〉 : λ ∈ Λ} forms an orthogonal basis (Fourier basis) for the Hilbert space L2(μM,D). The 
set Λ is then called a spectrum for μM,D; we also say that (μM,D, Λ) is a spectral pair. The question we 
are concerned is the spectrality or non-spectrality of μM,D. This question has its origin in analysis and 
geometry. It was initiated by Fuglede [6] who investigated which subsets of Rn with the Lebesgue measures 
are spectral. In the same paper, Fuglede proposed his famous conjecture on the relationship between the 
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spectral set and the translation tile of Rn. This conjecture and its related problems have received much 
attention in the last few decades (see [10]). In particular, the operator-theoretic approach on these problems 
initiated by Jorgensen and Pedersen lead the research into the realm of fractals. In terms of fractal mea-
sures, it is started with the work of Jorgensen and Pedersen [8,9] who showed that for certain M and D, 
the measure μM,D may be spectral, while for another M and D, the measure μM,D may be non-spectral. 
Subsequently, there are many researches on this question (see [1–3,5,14,15,18,19] and the references cited 
therein). The previous researches illustrate that the spectrality of μM,D requires strict conditions on the 
Fourier transform μ̂M,D, it has close relation with the problem of finiteness or infiniteness of orthogonal 
exponentials in the Hilbert space L2(μM,D). And for some pairs (M, D), the non-spectrality of μM,D is due 
to the fact that there are at most a finite number of orthogonal exponential functions in the Hilbert space 
L2(μM,D). The present paper will follow the paper [13] to further proving the non-spectrality of self-affine 
measure μM,D on the typical fractal: the spatial Sierpinski gasket T (M, D), where

M =

⎡
⎣ p1 0 0

0 p2 0
0 0 p3

⎤
⎦ (p1, p2, p3 ∈ Z \ {0,±1}) and

D =

⎧⎨
⎩
⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝ 0

1
0

⎞
⎠ ,

⎛
⎝ 0

0
1

⎞
⎠
⎫⎬
⎭ . (1.2)

For such a pair (M, D) in (1.2), the spectrality or non-spectrality of μM,D can be summarized as the 
following Theorem A.

Theorem A. For the self-affine measure μM,D corresponding to (1.2), the following spectrality and non-
spectrality hold:

(i) If p1 = p2 = p3 = p and p ∈ 2Z \ {0}, then μM,D is a spectral measure;
(ii) If pj ∈ 2Z \ {0, 2} for j = 1, 2, 3, then μM,D is a spectral measure;
(iii) If pj ∈ (2Z + 1) \ {±1} for j = 1, 2, 3, then μM,D is a non-spectral measure, and there exist at most 4

mutually orthogonal exponential functions in L2(μM,D), where the number 4 is the best upper bound.

See [8], [9, Example 7.1], [16], [17, Example 2.9(e)], [4, Theorem 5.1(iii)], [11, Theorem 1], [12]. Also there 
are two problems on the spectrality of such self-affine measure μM,D:

Question 1. How about the spectrality of μM,D if pj ∈ 2Z \ {0} (j = 1, 2, 3) and one or two of the three 
numbers p1, p2, p3 can take the value 2?

Question 2. How about the spectrality of μM,D if pj (j = 1, 2, 3) have different parity?

In a recent paper [13], we settled Question 1 except for the case that two of the three numbers p1, p2, p3
are 2 and the other number is −2, or except for the case that two of the three numbers p1, p2, p3 are −2
and the other number is 2. The spectrality of μM,D in the case when pj ∈ 2Z \ {0} (j = 1, 2, 3) can also be 
obtained by applying a recent result of [3] and [5]. The answer is that μM,D is a spectral measure. So the 
remaining problem relating to this case is to determine all the spectra for such a measure μM,D. However, 
for Question 2, only a little result is known. We summarize the known result as the following Theorem B.

Theorem B. (See [13].) (i) If M and D are given by (1.2) with p1 ∈ 2Z and p2 = p3 ∈ 2Z +1, then μM,D is 
a non-spectral measure, and there exist at most 4 mutually orthogonal exponential functions in L2(μM,D), 
where the number 4 is the best upper bound; (ii) If M and D are given by (1.2) with any two of the three 
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numbers p1, p2, p3 being in the set 2Z, then there are infinite families of orthogonal exponentials E(Λ) in 
L2(μM,D) with Λ ⊆ Z

3.

In the present paper, we shall further consider Question 2 by relaxing the condition p2 = p3 ∈ 2Z + 1
of Theorem B(i). The main result shows that if two of the three numbers p1, p2, p3 are in the set 2Z + 1
and the other one of the three numbers p1, p2, p3 is in the set 2Z, then μM,D is a non-spectral measure, and 
there are at most a finite number of orthogonal exponential functions in L2(μM,D). Therefore, combined 
with Theorem A(iii) and Theorem B(ii), we know that for the spatial Sierpinski gasket (1.2), if any two 
of the three numbers p1, p2, p3 are in the set 2Z, then there are infinite families of orthogonal exponentials 
E(Λ) in L2(μM,D) with Λ ⊆ Z

3; if any two of the three numbers p1, p2, p3 are in the set 2Z + 1, then 
there are at most a finite number of orthogonal exponential functions in L2(μM,D). This completely solves 
the problem of how to determine the L2(μM,D)-space has finite or infinite orthogonal exponentials on the 
spatial Sierpinski gasket (1.2).

2. Main result and its proof

The main result which generalizes Theorem B(i) is contained in the following.

Theorem 2.1. If M and D are given by (1.2) with p1 ∈ 2Z and p2, p3 ∈ 2Z + 1, then μM,D is a non-spectral 
measure, and there are at most a finite number of orthogonal exponential functions in L2(μM,D).

Proof. Since the case p2 = p3 is contained in Theorem B(i), we mainly deal with the case p2 �= p3 in the 
following discussion. From (1.1), the Fourier transform μ̂M,D(ξ) of the measure μM,D is given by

μ̂M,D(ξ) =
∫

e2πi〈x,ξ〉dμM,D(x) =
∞∏
j=1

mD(M∗−jξ) (ξ ∈ R
n)

where M∗ denotes the transposed conjugate of M (in fact, M∗ = MT ) and

mD(x) = 1
|D|

∑
d∈D

e2πi〈d,x〉 (x ∈ R
n).

For the pair (M, D) given by (1.2), it is known [13] that the zero set Z(μ̂M,D(ξ)) of the Fourier transform 
μ̂M,D(ξ) is

Z(μ̂M,D(ξ)) =
∞⋃
j=1

M∗jZ(mD(ξ)) := B1 ∪B2 ∪B3, (2.1)

where

B1 =
∞⋃
j=1

⎧⎪⎨
⎪⎩
⎛
⎜⎝

(1/2 + k1)pj1
(a + k2)pj2

(1/2 + a + k3)pj3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3, (2.2)

B2 =
∞⋃
j=1

⎧⎪⎨
⎪⎩
⎛
⎜⎝

(1/2 + a + k1)pj1
(1/2 + k2)pj2
(a + k3)pj3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3, (2.3)

B3 =
∞⋃
j=1

⎧⎪⎨
⎪⎩
⎛
⎜⎝

(a + k1)pj1
(1/2 + a + k2)pj2

j

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3. (2.4)

(1/2 + k3)p3
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From p1 ∈ 2Z \ {0} and p2, p3 ∈ (2Z + 1) \ {±1}, we can verify that the following two lemmas hold.

Lemma 2.1. Let ξ = (ξ1, ξ2, ξ3)T ∈ Z(μ̂M,D(ξ)) = B1 ∪ B2 ∪ B3, where the sets Bj (j = 1, 2, 3) are given 
by (2.2), (2.3) and (2.4) respectively. Then the following statements hold:

(a) ξ ∈ Bj ⇐⇒ −ξ ∈ Bj (j = 1, 2, 3);
(b) Z(μ̂M,D(ξ)) 

⋂
Z

3 = Z(μ̂M,D(ξ)) 
⋂

((1/2, 1/2, 1/2)T + Z
3) = ∅;

(c) If ξ ∈ Bj, then ξj ∈ 1
2 + Z, where j = 2, 3;

(d) If ξ = (ξ1, ξ2, ξ3)T ∈ B2 ±B2, then ξ2 ∈ Z;
(e) If ξ = (ξ1, ξ2, ξ3)T ∈ B3 ±B3, then ξ3 ∈ Z.
(f ) If ξ2 ∈ Z, then ξ ∈ B1 ∪B3 and ξ3 /∈ Z;
(g) If ξ3 ∈ Z, then ξ ∈ B1 ∪B2 and ξ2 /∈ Z.

The conclusions of Lemma 2.1(f), (g) illustrate that the last two coordinates ξ2, ξ3 of ξ cannot be integers 
simultaneously.

Lemma 2.2. Let ξ = (ξ1, ξ2, ξ3)T ∈ Z(μ̂M,D(ξ)) = B1 ∪ B2 ∪ B3. In the case when ξ ∈ B1, ξ1 ∈ Z and the 
following statements hold:

(i) If ξ2 ∈ Z, then there exist j ∈ N = {1, 2, 3, . . .} and k̂1, ̂k2 ∈ Z such that

ξ3 = 1
2 + k̂1

pj3
pj2

+ k̂2; (2.5)

(ii) If ξ3 ∈ Z, then there exist j ∈ N and k̂1, ̂k2 ∈ Z such that

ξ2 = (2k̂1 − 1) pj2
(2pj3)

+ k̂2. (2.6)

Secondly, assume that λj ∈ R
3 (j = 1, 2, 3, . . .) are such that the infinite family of functions

e2πi〈λ1,x〉, e2πi〈λ2,x〉, e2πi〈λ3,x〉, · · ·

are mutually orthogonal in L2(μM,D), then

λj − λk ∈ Z(μ̂M,D(ξ)) = B1 ∪B2 ∪B3 (j, k ≥ 1, j �= k). (2.7)

We shall apply the above two lemmas as well as the other properties established for B1 to look for a con-
tradiction.

Now, from (2.7), the following infinite differences:

λ2 − λ1, λ3 − λ1, λ4 − λ1, λ5 − λ1, . . . , λn − λ1, . . . ;

λ3 − λ2, λ4 − λ2, λ5 − λ2, . . . , λn − λ2, . . . ;

λ4 − λ3, λ5 − λ3, . . . , λn − λ3, . . . ;

λ5 − λ4, . . . , λn − λ4, . . . ;
. . . . . . . . .

(2.8)

belong to the union of the three sets B1, B2 and B3. Let Row1 denote the first row of (2.8), that is,

Row1 = {λ2 − λ1, λ3 − λ1, λ4 − λ1, λ5 − λ1, . . . , λn − λ1, . . .}.
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Row2 denotes the second row of (2.8), and so on. We also denote the difference by

λj − λk = (xj,k, yj,k, zj,k)T ∈ R
3 for j, k ≥ 1 and j �= k.

From the first row of (2.8) and Row1 ⊆ B1 ∪B2 ∪B3, we only need to consider the following three cases:

Case 1: The set B1 contains infinite elements of the set Row1;
Case 2: The set B2 contains infinite elements of the set Row1;
Case 3: The set B3 contains infinite elements of the set Row1.

2.1. Proof of Case 2 and Case 3

We first prove Case 2. Since B2 contains infinite differences of Row1, the method of proving Case 2 is to 
consider these differences and to write the differences of these differences as (2.8), then we apply the above 
Lemmas 2.1 and 2.2 to deduce a contradiction.

Without loss of generality, we may assume that Case 2 is

λ2 − λ1, λ3 − λ1, λ4 − λ1, λ5 − λ1, . . . , λn − λ1, . . . ∈ B2, (2.9)

that is, Row1 ⊆ B2. Then, applying Lemma 2.1(d), (f), we have

λ3 − λ2, λ4 − λ2, λ5 − λ2, . . . , λn − λ2, . . . ∈ B2 −B2 ⊆ B1 ∪B3;

λ4 − λ3, λ5 − λ3, . . . , λn − λ3, . . . ∈ B2 −B2 ⊆ B1 ∪B3;

λ5 − λ4, . . . , λn − λ4, . . . ∈ B2 −B2 ⊆ B1 ∪B3;
. . . . . . . . . ,

(2.10)

that is,

Row2, Row3, Row4, . . . ⊆ B2 −B2 ⊆ B1 ∪B3, (2.11)

and the second coordinate of each difference in (2.10) is in Z.
From Lemma 2.1(f) and (2.11), we observe that for any j = 2, 3, 4, . . . , B3 cannot contain any two 

elements of the set Rowj. For example, if B3 contains two elements of Row2, say λ3 − λ2 and λ4 − λ2, then 
λ4 − λ3 = (λ4 − λ2) − (λ3 − λ2) ∈ B3 − B3, and z4,3 ∈ Z, a contradiction of the fact that y4,3 ∈ Z. Hence, 
according to the first row of (2.10), B3 contains at most one element of the set Row2, and the discussion 
leads to the following two cases:

Case 2.1: λ3 − λ2 ∈ B3 and Row2 \ {λ3 − λ2} ⊆ B1;
Case 2.2: Row2 ⊆ B1.

Case 2.1 denotes that B3 contains one element of the set Row2, say λ3 − λ2. Case 2.2 denotes that B3
contains no element of the set Row2.

In Case 2.1, we have

λ3 − λ2 = (x3,2, y3,2, z3,2)T ∈ B3 and x3,2 ∈ R, y3,2 ∈ Z, z3,2 ∈ 1
2 + Z; (2.12)

λn − λ2 = (xn,2, yn,2, zn,2)T ∈ B1 and xn,2, yn,2 ∈ Z, zn,2 ∈ R (n = 4, 5, 6, . . .), (2.13)

where zn,2 (n = 4, 5, 6, . . .) can be represented by (2.5).
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It follows from Lemma 2.1, (2.11) and (2.12) that

Row3 ⊆ B1. (2.14)

That is, B3 contains no element of the set Row3, for if B3 contains one element of the set Row3, say λ4−λ3, 
then λ4 − λ2 = (λ4 − λ3) + (λ3 − λ2) ∈ B3 + B3, and z4,2 ∈ Z, a contradiction of the fact that y4,2 ∈ Z.

Now, consider the elements of the sets Row2 and Row3. From (2.14) and Row2 \ {λ3 − λ2} ⊆ B1, we see 
that the difference λ3 − λ2 can be written as

λ3 − λ2 = (λn − λ2) − (λn − λ3) for each n = 4, 5, 6, . . . ,

which yields

z3,2 = zn,2 − zn,3 for a given n ∈ {4, 5, 6, . . .}, (2.15)

where (by Lemma 2.2(i))

zn,2 = 1
2 + k̂1

pj3
pj2

+ k̂2 and zn,3 = 1
2 + k̂3

pj13
pj12

+ k̂4, (2.16)

for some j, j1 ∈ N = {1, 2, 3, . . .} and k̂1, ̂k2, ̂k3, ̂k4 ∈ Z. From (2.12), we write z3,2 = 1
2 + k̂ (k̂ ∈ Z). Then, 

(2.15) and (2.16) yield

(
1
2 + k̂1

pj3
pj2

+ k̂2

)
−

(
1
2 + k̂3

pj13
pj12

+ k̂4

)
= 1

2 + k̂. (2.17)

Assume that j ≥ j1, we obtain

k̂1p
j
3 − k̂3p

j1
3 pj−j1

2 + (k̂2 − k̂4 − k̂)pj2 = 1
2p

j
2. (2.18)

Since the left-hand side of (2.18) is in Z and the right-hand side of (2.18) is in 1
2 +Z, we thus get a contra-

diction. Case 2.1 is proved.
In Case 2.2, we consider the elements of the set Row3 ⊆ B2 −B2 ⊆ B1 ∪B3. With the same method as 

above, B3 contains at most one element of the set Row3. So the discussion leads to the following two cases:

Case 2.2.1: Row2 ⊆ B1, λ4 − λ3 ∈ B3 and Row3 \ {λ4 − λ3} ⊆ B1;
Case 2.2.2: Row2 ⊆ B1 and Row3 ⊆ B1.

Case 2.2.1 denotes that B3 contains one element of the set Row3, say λ4 − λ3. Case 2.2.2 denotes that 
B3 contains no element of the set Row3. The proof of Case 2.2.1 is similar to the proof of Case 2.1, and the 
proof of Case 2.2.2 is easier than the proof of Case 2.2.1. In fact, in both Case 2.2.1 and Case 2.2.2, there 
always exist three differences, say λ3 − λ2, λ5 − λ2 and λ5 − λ3 in B1 such that

(λ5 − λ2) − (λ5 − λ3) = λ3 − λ2.

There are many such relations in Case 2.2.1 and in Case 2.2.2 respectively. This yields

z3,2 = z5,2 − z5,3, (2.19)
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where (by Lemma 2.2(i))

z3,2 = 1
2 + k̂1

pj13
pj12

+ k̂2, z5,2 = 1
2 + k̂3

pj23
pj22

+ k̂4 and z5,3 = 1
2 + k̂5

pj33
pj32

+ k̂6, (2.20)

for some j1, j2, j3 ∈ N = {1, 2, 3, . . .} and k̂1, ̂k2, ̂k3, ̂k4, ̂k5, ̂k6 ∈ Z. Let j0 = max{j1, j2, j3}. Then, from (2.19)
and (2.20), we obtain

1
2p

j0
2 = −k̂1p

j1
3 pj0−j1

2 + k̂3p
j2
3 pj0−j2

2 − k̂5p
j3
3 pj0−j3

2 + (k̂4 − k̂6 − k̂2)pj02 . (2.21)

Since the left-hand side of (2.21) is in 1
2 +Z and the right-hand side of (2.21) is in Z, we thus get a contra-

diction. Case 2.2 is proved. Therefore, the proof of Case 2 is completed.
The proof of Case 3 is similar to the proof of Case 2, so we omit the proof of Case 3.

2.2. Proof of Case 1

Without loss of generality, we may assume that Case 1 is

λ2 − λ1, λ3 − λ1, λ4 − λ1, λ5 − λ1, . . . , λn − λ1, . . . ∈ B1, (2.22)

that is, Row1 ⊆ B1. Then, we have

λ3 − λ2, λ4 − λ2, λ5 − λ2, . . . , λn − λ2, . . . ∈ B1 −B1;

λ4 − λ3, λ5 − λ3, . . . , λn − λ3, . . . ∈ B1 −B1;

λ5 − λ4, . . . , λn − λ4, . . . ∈ B1 −B1;
. . . . . . . . . ,

(2.23)

that is, Row2, Row3, Row4, . . . ⊆ B1 −B1, and the first coordinate of each difference in (2.22) and (2.23) is 
in Z.

Now, we consider (2.23) instead of (2.8). There are three cases:

Case 1̂: The set B1 contains infinite elements of the set Row2;
Case 2̂: The set B2 contains infinite elements of the set Row2;
Case 3̂: The set B3 contains infinite elements of the set Row2.

With the same method as in Subsection 2.1, we know that Case 2̂ and Case 3̂ are impossible. That is, 
B2 and B3 contain only finite elements of the set Row2, while the set B1 contains infinite elements of the set 
Row2. Equivalently, except the finite elements of the set Row2, all other infinite elements of the set Row2
are in B1.

Similarly, we know that B2 and B3 contain only finite elements of the set Row3, while the set B1
contains infinite elements of the set Row3. That is, for each j = 2, 3, 4, . . . , except the finite elements of 
the set Rowj, all other infinite elements of the set Rowj are in B1. Therefore, without loss of generality, 
from (2.22) and (2.23), we may assume that

λ2 − λ1, λ3 − λ1, λ4 − λ1, λ5 − λ1, . . . , λn − λ1, . . . ∈ B1;

λ3 − λ2, λ4 − λ2, λ5 − λ2, . . . , λn − λ2, . . . ∈ B1 ∩ (B1 −B1);

λ4 − λ3, λ5 − λ3, . . . , λn − λ3, . . . ∈ B1 ∩ (B1 −B1);

λ5 − λ4, . . . , λn − λ4, . . . ∈ B1 ∩ (B1 −B1);
. . . . . . . . .

(2.24)



1012 J.-L. Li / J. Math. Anal. Appl. 432 (2015) 1005–1017
From (2.2), we let B1 = B1,1 ∪B1,2 ∪B1,3 ∪ · · · =
⋃∞

j=1 B1,j , where

B1,j =

⎧⎪⎨
⎪⎩
⎛
⎜⎝

(1/2 + k1)pj1
(a + k2)pj2

(1/2 + a + k3)pj3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3. (2.25)

By analyzing the first coordinate of the elements of B1, we have the following Lemma 2.3.

Lemma 2.3.

(i) For each j ∈ N and an element ξ ∈ (B1,j ±B1,j), if ξ ∈ B1,ĵ for some integer ĵ ∈ N, then ĵ > j;
(ii) Let j, ̃j ∈ N and j �= j̃. For each element ξ ∈ (B1,j ± B1,j̃), if ξ ∈ B1,ĵ for some integer ĵ ∈ N, then 

ĵ = min{j, ̃j}.

Also, the following Lemma 2.4 is fundamental.

Lemma 2.4. Let p2, p3 ∈ (2Z +1) \{±1} and p2 �= p3. If α, β ∈ N have different parity, then for any k, ̃k ∈ Z,

(2k + 1)(pα3 − pα2 ) �= (2k̃ + 1)(pβ3 − pβ2 ). (2.26)

Proof. For any n ∈ N, we have

pn3 − pn2 = (p3 − p2)(pn−1
3 p0

2 + pn−2
3 p1

2 + pn−3
3 p2

2 + · · · + p1
3p

n−2
2 + p0

3p
n−1
2 ),

which yields

pn3 − pn2
p3 − p2

=
{ even number, if n is even;

odd number, if n is odd.
(2.27)

Hence, if α is odd, then β is even, and for any k, ̃k ∈ Z,

(2k + 1)p
α
3 − pα2
p3 − p2

is odd number and (2k̃ + 1)p
β
3 − pβ2
p3 − p2

is even number, (2.28)

and thus (2.26) holds. Similar result holds if α is even and β is odd. This proves Lemma 2.4. �
Note that, for the larger j, ĵ and j > ĵ, the differences λj − λĵ in (2.24) can be represented by the 

other differences in the following form: λj − λĵ = (λj − λ1) − (λĵ − λ1) = (λj − λ2) − (λĵ − λ2) = · · · =
(λj − λĵ−1) − (λĵ − λĵ−1). These representations readily deduce a contradiction from Lemma 2.3 and 
Lemma 2.4. In the following discussion, we mainly illustrate this method.

We write B1 = Bodd
⋃

Beven, where Bodd = ∪∞
j=1B1,2j−1 and Beven = ∪∞

j=1B1,2j . From (2.24), we only 
need to consider the two cases: λ2 − λ1 ∈ Bodd and λ2 − λ1 ∈ Beven.

(I) Case 1̃: λ2 − λ1 ∈ Bodd .
We may assume that λ2 − λ1 ∈ B1,1. Since the other differences of (2.24) are in the set Bodd ∪ Beven, 

we begin with the case that Row1 or Row2 has an element belonging to Beven. Then, we consider the case 
that all elements of Row1 or Row2 are in Bodd . Each case concludes with a contradiction.

Step 1. In Row1, let λk1 − λ1 ∈ Beven for some k1 > 2. More precisely, let λk1 − λ1 ∈ B1,k̃1
for some even 

number k̃1 > 1. Then, for any k̃2 ≥ k̃1 and for any element λk2 − λ1 ∈ B1,k̃ , we have (by Lemma 2.3)

2
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λk1 − λ2 = (λk1 − λ1) − (λ2 − λ1) ∈ B1,1; (2.29)

λk2 − λ2 = (λk2 − λ1) − (λ2 − λ1) ∈ B1,1; (2.30)

λk2 − λk1 = (λk2 − λ1) − (λk1 − λ1) ∈ B1,k̃1
, if k̃2 > k̃1; (2.31)

λk2 − λk1 = (λk2 − λ1) − (λk1 − λ1) ∈ B1,k̃, if k̃2 = k̃1, (2.32)

where k̃ > k̃2 = k̃1. Also, from (2.29), (2.30) and Lemma 2.3(i), we have

λk2 − λk1 = (λk2 − λ2) − (λk1 − λ2) ∈ B1,k̃3
, for some k̃3 > 1. (2.33)

From (2.25), we can write the differences in (2.29)–(2.33) as follows:

λ2 − λ1 =

⎛
⎜⎝

(1/2 + k211)p1

(a21 + k212)p2

(1/2 + a21 + k213)p3

⎞
⎟⎠ , a21 ∈ R, k211, k212, k213 ∈ Z; (2.34)

λk1 − λ1 =

⎛
⎜⎝

(1/2 + kk111)p
k̃1
1

(ak11 + kk112)p
k̃1
2

(1/2 + ak11 + kk113)p
k̃1
3

⎞
⎟⎠ , ak11 ∈ R, kk111, kk112, kk113 ∈ Z; (2.35)

λk2 − λ1 =

⎛
⎜⎝

(1/2 + kk211)p
k̃2
1

(ak21 + kk212)p
k̃2
2

(1/2 + ak21 + kk213)p
k̃2
3

⎞
⎟⎠ , ak21 ∈ R, kk211, kk212, kk213 ∈ Z, (2.36)

and write λk1 − λ2, λk2 − λ2, λk2 − λk1 in the same form as above. Then, from (2.29), we have

⎛
⎜⎝

(1
2 + kk121)p1

(ak12 + kk122)p2

(1
2 + ak12 + kk123)p3

⎞
⎟⎠ =

⎛
⎜⎝

(1
2 + kk111)p

k̃1
1

(ak11 + kk112)p
k̃1
2

(1
2 + ak11 + kk113)p

k̃1
3

⎞
⎟⎠−

⎛
⎜⎝

(1
2 + k211)p1

(a21 + k212)p2

(1
2 + a21 + k213)p3

⎞
⎟⎠ . (2.37)

The comparison of the second coordinate and the third coordinate in (2.37) shows that pk̃1−1
3 �= pk̃1−1

2 and

ak11 = 2k̂ + 1
2(pk̃1−1

3 − pk̃1−1
2 )

for some k̂ ∈ Z. (2.38)

Similarly, from (2.30), we have

⎛
⎜⎝

(1
2 + kk221)p1

(ak22 + kk222)p2

(1
2 + ak22 + kk223)p3

⎞
⎟⎠ =

⎛
⎜⎝

(1
2 + kk211)p

k̃2
1

(ak21 + kk212)p
k̃2
2

(1
2 + ak21 + kk213)p

k̃2
3

⎞
⎟⎠−

⎛
⎜⎝

(1
2 + k211)p1

(a21 + k212)p2

(1
2 + a21 + k213)p3

⎞
⎟⎠ . (2.39)

The comparison of the second coordinate and the third coordinate in (2.39) shows that pk̃2−1
3 �= pk̃2−1

2 and

ak21 = 2k̂1 + 1
2(pk̃2−1

3 − pk̃2−1
2 )

for some k̂1 ∈ Z. (2.40)

From (2.31), we have
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⎛
⎜⎝

(1
2 + kk2k11)p

k̃1
1

(ak2k1 + kk2k12)p
k̃1
2

(1
2 + ak2k1 + kk2k13)p

k̃1
3

⎞
⎟⎠ =

⎛
⎜⎝

(1
2 + kk211)p

k̃2
1

(ak21 + kk212)p
k̃2
2

(1
2 + ak21 + kk213)p

k̃2
3

⎞
⎟⎠−

⎛
⎜⎝

(1
2 + kk111)p

k̃1
1

(ak11 + kk112)p
k̃1
2

(1
2 + ak11 + kk113)p

k̃1
3

⎞
⎟⎠ , (2.41)

which yields pk̃2−k̃1
3 �= pk̃2−k̃1

2 and

ak21 = 2k̂2 + 1
2(pk̃2−k̃1

3 − pk̃2−k̃1
2 )

for some k̂2 ∈ Z, if k̃2 > k̃1. (2.42)

(i) In the case when k̃2 > k̃1, it follows from (2.40) and (2.42) that

(2k̂1 + 1)(pk̃2−k̃1
3 − pk̃2−k̃1

2 ) = (2k̂2 + 1)(pk̃2−1
3 − pk̃2−1

2 ). (2.43)

Since k̃1 is an even number, k̃2−1 and k̃2−k̃1 have different parity for any k̃2 ∈ N. So (2.43) is a contradiction 
of (2.26).

(ii) In the case when k̃2 = k̃1, from (2.32), we get pk̃−k̃1
3 �= pk̃−k̃1

2 and

ak2k1 = 2k̂3 + 1
2(pk̃−k̃1

3 − pk̃−k̃1
2 )

= 2k̂3 + 1
2(pk̃−k̃2

3 − pk̃−k̃2
2 )

for some k̂3 ∈ Z. (2.44)

Observe from (2.32) and (2.33) that in the case when k̃2 = k̃1, we can take k̃3 = k̃ in (2.33). Hence, 
from (2.33), we get pk̃−1

3 �= pk̃−1
2 and

ak2k1 = 2k̂4 + 1
2(pk̃−1

3 − pk̃−1
2 )

for some k̂4 ∈ Z. (2.45)

It follows from (2.44) and (2.45) that

(2k̂4 + 1)(pk̃−k̃1
3 − pk̃−k̃1

2 ) = (2k̂3 + 1)(pk̃−1
3 − pk̃−1

2 ). (2.46)

Since k̃1 is an even number, k̃−1 and k̃− k̃1 have different parity for any k̃ ∈ N. So (2.46) is a contradiction 
of (2.26).

Step 2. In Row2, let λk1 − λ2 ∈ Beven for some k1 > 2. More precisely, let λk1 − λ2 ∈ B1,k̃1
for some even 

number k̃1 > 1. Then, for any k̃2 ≥ k̃1 and for any element λk2 − λ2 ∈ B1,k̃2
, we have (by Lemma 2.3)

λk1 − λ1 = (λk1 − λ2) + (λ2 − λ1) ∈ B1,1; (2.47)

λk2 − λ1 = (λk2 − λ2) + (λ2 − λ1) ∈ B1,1; (2.48)

λk2 − λk1 = (λk2 − λ2) − (λk1 − λ2) ∈ B1,k̃1
, if k̃2 > k̃1; (2.49)

λk2 − λk1 = (λk2 − λ2) − (λk1 − λ2) ∈ B1,k̃, if k̃2 = k̃1, (2.50)

where k̃ > k̃2 = k̃1. Also, from (2.47), (2.48) and Lemma 2.3(i), we have

λk2 − λk1 = (λk2 − λ1) − (λk1 − λ1) ∈ B1,k̃3
, for some k̃3 > 1, (2.51)

which is analogous to (2.29)–(2.33) respectively. The same method will yield a contradiction of (2.26).
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Step 3. In the case when Row1 ⊆ Bodd , we can choose a larger n ∈ N, and let λk1 − λ1 ∈ Row1 ∩ B1,2n+1
for some k1 > 2. Then, by Lemma 2.3, λk1 − λ2 = (λk1 − λ1) − (λ2 − λ1) ∈ B1,1 gives

⎛
⎜⎝

1
2 + kk121

ak12 + kk122
1
2 + ak12 + kk123

⎞
⎟⎠ =

⎛
⎜⎝

(1
2 + kk111)p2n

1

(ak11 + kk112)p2n
2

(1
2 + ak11 + kk113)p2n

3

⎞
⎟⎠−

⎛
⎜⎝

1
2 + k211

a21 + k212
1
2 + a21 + k213

⎞
⎟⎠ . (2.52)

The comparison of the second coordinate and the third coordinate in (2.52) shows that p2n
3 �= p2n

2 and

ak11 = 2k̂ + 1
2(p2n

3 − p2n
2 ) = 2k̂ + 1

2((p2
3)n − (p2

2)n) for some k̂ ∈ Z. (2.53)

For any λk2 − λ1 ∈ B1,2n1+1 with k2 �= k1 and odd number n1 < n, the equality λk2 − λk1 = (λk2 − λ1) −
(λk1 − λ1) ∈ B1,2n1+1 gives p(2n−2n1)

3 �= p
(2n−2n1)
2 and

ak11 = 2k̂1 + 1
2(p(2n−2n1)

3 − p
(2n−2n1)
2 )

= 2k̂1 + 1
2((p2

3)(n−n1) − (p2
2)(n−n1))

for some k̂1 ∈ Z. (2.54)

It follows from (2.53) and (2.54) that

(2k̂ + 1)((p2
3)(n−n1) − (p2

2)(n−n1)) = (2k̂1 + 1)((p2
3)n − (p2

2)n). (2.55)

Since n1 is an odd number, n and n − n1 have different parity for any n ∈ N. So (2.55) is a contradiction 
of (2.26).

Step 4. Similar to Step 3, in the case when Row2 ⊆ Bodd , we can also choose a larger n ∈ N, and let 
λk1 − λ2 ∈ Row2 ∩B1,2n+1 for some k1 > 2. Then, by Lemma 2.3, λk1 − λ1 = (λk1 − λ2) + (λ2 − λ1) ∈ B1,1
gives

⎛
⎜⎝

1
2 + kk111

ak11 + kk112
1
2 + ak11 + kk113

⎞
⎟⎠ =

⎛
⎜⎝

(1
2 + kk121)p2n

1

(ak12 + kk122)p2n
2

(1
2 + ak12 + kk123)p2n

3

⎞
⎟⎠ +

⎛
⎜⎝

1
2 + k211

a21 + k212
1
2 + a21 + k213

⎞
⎟⎠ . (2.56)

The comparison of the second coordinate and the third coordinate in (2.56) shows that p2n
3 �= p2n

2 and

ak12 = 2k̂ + 1
2(p2n

3 − p2n
2 ) = 2k̂ + 1

2((p2
3)n − (p2

2)n) for some k̂ ∈ Z. (2.57)

For any λk2 − λ2 ∈ B1,2n1+1 with k2 �= k1 and odd number n1 < n, the equality λk2 − λk1 = (λk2 − λ2) −
(λk1 − λ2) ∈ B1,2n1+1 gives p(2n−2n1)

3 �= p
(2n−2n1)
2 and

ak12 = 2k̂1 + 1
2(p(2n−2n1)

3 − p
(2n−2n1)
2 )

= 2k̂1 + 1
2((p2

3)(n−n1) − (p2
2)(n−n1))

for some k̂1 ∈ Z. (2.58)

It follows from (2.57) and (2.58) that

(2k̂ + 1)((p2
3)(n−n1) − (p2

2)(n−n1)) = (2k̂1 + 1)((p2
3)n − (p2

2)n). (2.59)

Since n and n − n1 have different parity for any n ∈ N, (2.59) is a contradiction of (2.26).
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Note that λ2 − λ1 ∈ B1,1, if Row1 ⊆ B1,1, then by Lemma 2.3(i), Row2 will have elements belonging to 
B1,j for some j > 1. Consider these elements and choose a larger j, then we can use the above-mentioned 
steps and method to provide a contradiction.

(II) Case 2̃: λ2 − λ1 ∈ Beven.
In the case when λ2 − λ1 ∈ Beven, without loss of generality, we may assume that λ2 − λ1 ∈ B1,2. Then, 

consider the other differences of (2.24), the same method as above can be applied to show that if Row1 or 
Row2 has an element belonging to Bodd, then a contradiction can be obtained. Also, if Row1 ∪Row2 ⊆ Beven
happens, we can consider the other sets Rowj (j = 3, 4, . . .), and apply the above-mentioned method to get 
a contradiction. This completes the proof of Theorem 2.1. �

In the end of this paper, we would like to point out that the finiteness of μM,D-orthogonal exponentials 
implies that μM,D is a non-spectral measure. Theorem 2.1 extends Theorem B(i) in the non-spectrality of 
self-affine measure, and the method of proving Theorem 2.1 is different from the known [12,13] method. 
On the other hand, the conclusion of Theorem B(i) includes the precise number “4”. This is the best up-
per bound for the number of mutually orthogonal exponential functions in L2(μM,D). In any case, the 
Hilbert space L2(μM,D) corresponding to (1.2) always contains four-element mutually orthogonal exponen-
tials E(M∗(Λ1)) = E(M(Λ1)) with

Λ1 =

⎧⎨
⎩
⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝ 1/2 + k1

1/2 + k2
k3

⎞
⎠ ,

⎛
⎝ 1/2 + α + k4

α + k5
1/2 + k6

⎞
⎠ ,

⎛
⎝ α + k7

1/2 + α + k8
1/2 + k9

⎞
⎠
⎫⎬
⎭ (2.60)

or

Λ1 =

⎧⎨
⎩
⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝ 1/2 + k1

k2
1/2 + k3

⎞
⎠ ,

⎛
⎝ 1/2 + β + k4

1/2 + k5
β + k6

⎞
⎠ ,

⎛
⎝ β + k7

1/2 + k8
1/2 + β + k9

⎞
⎠
⎫⎬
⎭ (2.61)

or

Λ1 =

⎧⎨
⎩
⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝ k1

1/2 + k2
1/2 + k3

⎞
⎠ ,

⎛
⎝ 1/2 + k4

1/2 + γ + k5
γ + k6

⎞
⎠ ,

⎛
⎝ 1/2 + k7

γ + k8
1/2 + γ + k9

⎞
⎠
⎫⎬
⎭ , (2.62)

where k1, k2, . . . , k9 ∈ Z and α, β, γ ∈ R. However, to reach the precise number “4” in Theorem 2.1, the 
above method combined with the known method will play an essential role. There are many complicated 
cases to deal with. We conjecture that the conclusion of Theorem B(i) is also suitable to Theorem 2.1.
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