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In this paper, we consider the spectral properties of self-similar measures μR,D

generated by the integer R = Nq and the product-form digit set D = {0, 1, . . . ,
N − 1} ⊕Np{0, 1, . . . , N − 1}, where the integers q, p ≥ 1 and N ≥ 2. We show that 
μR,D is a spectral measure if and only if q � p.
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1. Introduction

Let μ be a Borel probability measure with compact support K in Rn. If there exists a countable set Λ
such that EΛ := {e2πi〈λ,x〉 : λ ∈ Λ} is an orthonormal basis for L2(μ), then we say that μ is a spectral 
measure, Λ is a spectrum of μ, and (μ, Λ) is a spectral pair. Moreover, if K has positive Lebesgue measure 
and μ is the Lebesgue measure on K, then we say that K is a spectral set. The existence of spectral measures 
is a basic and important problem in harmonic analysis, and it has a long history.

Recall that the compact set K is said to be a translational tile if there exists a countable subset J ⊂ Rn

such that K + J = Rn and {K + j : j ∈ J } is a disjoint family up to sets of Lebesgue zero. There is a 
large literature concerning the translational tiles (see [13], [14], [23–27] and the references therein). In 1974, 
Fuglede [12] mentioned an interesting conjecture connecting the spectral sets with the tiles in his seminal 
paper.
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Conjecture 1.1. Let K be a compact subset of Rn with positive Lebesgue measure. Then K is a spectral set 
if and only if K is a translation tile.

Although the conjecture has been proved to be false in both directions in dimension 3 and higher dimen-
sions [10,18,22], it is still suggestive in the research of spectral measure theory. In dimension 1 and 2, the 
conjecture is still open in two directions.

Let {φd(x)}d∈D be iterated function system (IFS) [16] defined by

φd(x) = R−1(x + d), x ∈ Rn, d ∈ D, (1.1)

where R is an n × n expanding real matrix (all the eigenvalues of R have moduli > 1), and D is a finite 
subset of Rn with the cardinality |D|. Then it arises a unique nonempty compact set T := T (R, D), called 
an attractor, and a Borel probability measure μ := μR,D, called a self-affine measure and supported on T , 
satisfying

T = ∪d∈D φd(T ), μ(·) = 1
|D|

∑
d∈D

μ ◦ φ−1
d (·). (1.2)

In 1998, Jorgensen and Pedersen [17] gave the first example of singularly spectral measure, and showed 
that the k-th Cantor measure is a spectral measure if k is even. This surprising discovery received a lot of 
attention. Later on, many researchers concentrated their work on fractal measures and the construction of 
their spectrums (see [1–9], [11], [15], [19–21]).

Recently, Dai, He and Lai [5] studied the self-similar measure generated by the integer R and the consec-
utive digit set D = {0, 1, . . . , N − 1}, and showed that it is a spectral measure provided that N divides R. 
Fu, He and Lau [11] considered the spectral properties of the self-similar measure with the modulo product-
form (or product-form) digit set on R, and showed that the self-similar set is a spectral set under some 
assumptions.

In this paper, we also consider the measure μR,D generated by a product-form digit set, and get the 
following theorem.

Theorem 1.2. Let R = Nq and D = {0, 1, . . . , N − 1} ⊕Np{0, 1, . . . , N − 1}, where the integers q, p ≥ 1 and 
N ≥ 2. Then the self-similar measure μR,D defined by (1.2) is a spectral measure if and only if q � p.

Theorem 1.2 gives a sufficient and necessary condition for the self-similar measure μR,D to be a spectral 
measure when R and D are of the special forms. Specially, when p = 1, μR,D is a N2-Bernoulli measure. In 
this case, μR,D is a spectral measure if and only if R = N2k for some k ∈ Z [6]. Moreover, the spectrality 
of such measures has been completely considered in [4] and [5] by Dai et al.

In the last of this paper, we consider the case R = |D|, i.e., q = 2. Using Theorem 2.1 in [23], we show 
that T (N2, D) is a translational tile if and only if 2 � p, i.e., p is an odd number (see Proposition 3.5). This 
implies that Fuglede’s conjecture is true in the special case.

Corollary 1.3. Let R = N2 and D = {0, 1, . . . , N − 1} ⊕Np{0, 1, . . . , N − 1}, where the integers p ≥ 1 and 
N ≥ 2. Then the self-similar set T (R, D) defined by (1.2) is a spectral set if and only if it is a translational 
tile.

We arrange this paper as follows. In Section 2, we will recall some basic concepts, and give several 
propositions and lemmas, which we will need to prove our main results. In Section 3, we will give the proof 
of Theorem 1.2 and Corollary 1.3 in detail.
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2. Preliminaries

We define the Fourier transform of a probability measure μ in Rn by

μ̂(ξ) =
∫
Rn

e2πi〈x, ξ〉dμ(x), ξ ∈ Rn.

Let φd, μR,D be defined by (1.1), (1.2) respectively. Then it follows from [9] or (1.2) that

μ̂R,D(ξ) =
∞∏

n=1
mD(R∗−nξ), ξ ∈ Rn, (2.1)

where R∗ denotes the transposed conjugate of R, and

mD(x) = 1
|D|

∑
d∈D

e2πi〈d,x〉, x ∈ Rn.

It follows from (2.1) that

Z(μ̂R,D) = ∪∞
n=1R

∗n(Z(mD)), (2.2)

where Z(f) denotes the set of all the zeros of the function f . For λ1, λ2 ∈ Rn,

〈e2πi〈λ1,x〉, e2πi〈λ2,x〉〉L2(μR,D) =
∫
Rn

e2πi〈λ1−λ2,x〉dμR,D(x) = μ̂R,D(λ1 − λ2).

It is easy to see that for a countable subset Λ ⊂ Rn, EΛ is an orthonormal set in L2(μR,D) if and only if

(Λ − Λ) \ {0} ⊂ Z(μ̂R,D). (2.3)

Now, we consider the case in R. Assume that the integers p, q, L ≥ 1 and N ≥ 2. When there is no 
confusion, we will take the same assumptions for p, q, L, N in this paper. Let the digit set

D = {0, 1, . . . , N − 1} ⊕NpL{0, 1, . . . , N − 1}. (2.4)

Then we can calculate the zeros of mD(x). Let D1 = {0, 1, . . . , N − 1}, and let D2 = MD1 with M = NpL. 
From D = D1 ⊕D2, it follows that

mD(x) = mD1(x)mD2(x) = mD1(x)mD1(Mx).

Note that

mD1(x) = 1
N

N−1∑
n=0

e2πinx = 1 − e2πiNx

N(1 − e2πix) , x /∈ N.

It is easy to see that Z(mD1) = { k
N : N � k}. Since

Z(mD) = Z(mD1) ∪
1
M

Z(mD1),
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we can get

Z(mD) = { k

N
: N � k} ∪ { k

Np+1L
: N � k}. (2.5)

Let

C := 1
Np+1 ({−1, 0, 1, . . . , N − 2} ⊕Np{0, 1, . . . , N − 1}) . (2.6)

Then the following proposition tells us that there exists a distance between the attractor T (Nq, C) and the 
zeros of mD.

Proposition 2.1. Let D be defined by (2.4) with L = 1. If q � p, then mD(x) 
= 0 for each x ∈ T (Nq, C).

Proof. Let C = C1 ⊕NpC2, where C1 = {−1, 0, 1, . . . , N − 2} and C2 = {0, 1, . . . , N − 1}. The assumption 
q � p implies that there exist m ∈ N and r ∈ [1, q − 1] ∩ N such that p = mq + r. Then it follows from the 
left equality in (1.2) that

T (Nq, C) =
∞∑

n=1
N−qnC =

∞∑
n=1

N−qnC1 +
∞∑

n=1
Np−qnC2

=
∞∑

n=1
N−qnC1 +

m∑
j=1

Nq(m−j)+rC2 +
∞∑

j=m+1
Nq(m−j)+rC2

=
m−1∑
j=0

Nqj+rC2 +
∞∑

n=1
N−qn(C1 + NrC2) := A + B, (2.7)

where we define A = ∅ if m = 0. Making use of the definition of C1 and C2, and noting that the integers 
N, q ≥ 2, we can check that

inf B =
∞∑

n=1

−1
Nqn

= −1
Nq − 1 > −1,

supB ≤
∞∑

n=1
(N − 2
Nqn

+ Nq−1(N − 1)
Nqn

) = (N − 1)Nq−1 + N − 2
Nq − 1 < 1.

This implies that the set B lies in the interval (−1, 1).
Next, we will prove this proposition by contradiction. Suppose there exists ξ0 ∈ T (Nq, C) such that 

mD(ξ0) = 0. From Np+1T (Nq, C) = T (Nq, C), it follows that Np+1ξ0 ∈ T (Nq, C). Moreover, using (2.5), 
we can find an integer k with N � k such that ξ0 = k

N or k
Np+1 .

Case 1: ξ0 = k
N . It follows from (2.7) that there exist ξ ∈ B and a finite sequence {cj}m−1

j=0 ⊂ C2 such 
that

kNp = Np+1ξ0 = ξ +
m−1∑
j=0

Nqj+rcj .

Note that Np+1ξ0, 
∑m−1

j=0 Nqj+rcj ∈ Z and ξ ∈ (−1, 1). Therefore the above equality holds if and only if 
ξ = 0. Since p = mq + r with 1 ≤ r ≤ q − 1, we have

k =
m−1∑
j=0

N (j−m)qcj ∈ [0, N − 1
Nq − 1 ] ⊆ [0, 1).

This implies that k = 0, which contradicts with N � k.
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Case 2: ξ0 = k
Np+1 . Similarly, it follows from (2.7) that there exist ξ′ ∈ B and a finite sequence 

{c′j}m−1
j=0 ⊂ C2 such that

k = Np+1ξ0 = ξ′ +
m−1∑
j=0

Nqj+rc′j .

By the similar way, we have ξ′ ∈ N, which implies that ξ′ = 0. Hence it follows from the above equality that

k =
m−1∑
j=0

Nqj+rc′j .

This contradicts with N � k, since the integer r ∈ [1, q − 1]. �
Noting that T (Nq, C) is a compact set, and making using of Proposition 2.1 and the finite covering 

theorem, we can find a small positive real number η such that mD(x) 
= 0 for each x lying in Tη := {x :
dist(x, T (Nq, C)) ≤ η}. Define

β := inf{|mD(x)| : x ∈ Tη}.

Then we can conclude that β > 0, since Tη is compact and |mD(x)| is continuous. For the Fourier transform 
μ̂Nq,D(ξ), we have the following proposition.

Proposition 2.2. Let D be defined by (2.4) with L = 1. If q � p, then there exists c > 0 such that |μ̂Nq,D(ξ)| ≥ c

for each ξ ∈ Tη.

Proof. We can claim that |mD(N−nqξ)| ≥ β for each positive integer n if ξ lies in Tη. In fact, if ξ ∈ Tη, 
then there exists ξ0 ∈ T (Nq, C) such that dist(ξ, ξ0) ≤ η. Using the left equality in (1.2), and noting that 
0 ∈ C, we can obtain N−qT (Nq, C) ⊂ T (Nq, C). Therefore it follows that N−qξ0 ∈ T (Nq, C), which implies 
that

dist(N−qξ, T (Nq, C)) ≤ dist(N−qξ,N−qξ0) ≤ N−qη ≤ η.

Hence we can obtain that N−nqξ lies in Tη for each positive integer n by induction. By the definition of β, 
we complete the proof of our claim.

Since |μ̂Nq,D(0)| = 1 and μ̂Nq,D(ξ) is continuous in R, there exists ρ > 0 such that |μ̂Nq,D(ξ)| ≥ 1/2 for 
each point in the closed disk |ξ| ≤ ρ. Let

M = sup{|y| : y ∈ Tη}.

Since Tη is a compact set, M is finite. Let n0 be the least integer such that N−n0qM ≤ ρ. Therefore we can 
obtain that |μ̂Nq,D(N−n0qξ)| ≥ 1/2, since N−n0q|ξ| ≤ ρ for every point ξ contained in Tη. Thus it follows 
from (2.1) that

|μ̂Nq,D(ξ)| = |
∞∏

n=1
mD(N−nqξ)| = |

n0∏
n=1

mD(N−nqξ)||
∞∏

n=n0+1
mD(N−nqξ)|

= |μ̂Nq,D(N−n0qξ)|
n0∏
n=1

|mD(N−nqξ)| ≥ βn0

2 .

Hence we complete the proof by choosing c = βn0/2. �
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Next, we will introduce two useful lemmas. Let Λ be a countable subset of R, and let

QΛ(ξ) =
∑
λ∈Λ

|μ̂(ξ + λ)|, ξ ∈ R.

Then the following well-known lemma gives an important criterion for a measure μ to be a spectral measure.

Lemma 2.3. [17] Let μ be a Borel probability measure with compact support in R. Then
(i) EΛ is an orthonormal set in L2(μ) if and only if QΛ(ξ) ≤ 1 for each ξ ∈ R;
(ii) EΛ is an orthonormal basis of L2(μ) if and only if QΛ(ξ) = 1 for each ξ ∈ R;
(iii) QΛ(ξ) is an entire function if EΛ is an orthonormal set in L2(μ).

Using Lemma 2.3, we can obtain the following lemma, which can be used to show that a measure is a 
non-spectral measure.

Lemma 2.4. [6] Let μ = μ1 ∗ μ2 be the convolution of two probability measures μi, i = 1, 2, and they are not 
Dirac measures. If EΛ is an orthonormal set in L2(μ1), then EΛ is also an orthonormal set in L2(μ), but 
Λ cannot be a spectrum of μ.

In the last, we will end this section by introducing something useful about the translational tile. Recall 
that D is said to be a tile digit set if T (R, D) is a translational tile. It is a challenge to characterize the 
structure of all tile digit sets for a given matrix. In the following, we will introduce a criterion for it.

Lemma 2.5. [23] For the expanding matrix R ∈ Mn(Z) and the digit set D with |D| = | det(R)|, the following 
three conditions are equivalent:

(i) D is a tile digit set of R;
(ii) for each k ≥ 1, the set 

∑k
n=1 R

nD contains | det(R)|k distinct elements;
(iii) for each s ∈ Zn \ {0}, there exists a nonnegative integer k = k(s) such that s is the zero of the 

function

hk(x) := 1
|D|

∑
d∈D

e2πi<R−kd,x>. (2.8)

3. Proof of the main results

In the first, we will prove the necessity of Theorem 1.2 in more general case.

Theorem 3.1. Let D be defined by (2.4) with N � L. If q | p, then μNq,D is a non-spectral measure.

Proof. It follows from the assumption that there exists a positive integer s such that p = sq. Divide the 
digit D into D1 ⊕D2, where D1 = {0, 1, . . . , N − 1} and D2 = NpLD1. Then it follows from (2.2) and (2.5)
that

Z(μ̂Nq,D1) = ∪∞
n=1N

nq{ k

N
: k ∈ Z, N � k}, Z(μ̂Nq,D2) = ∪∞

n=1N
(n−s)q{ k

NL
: k ∈ Z, N � k}.

Note that μNq,D = μNq,D1 ∗ μNq,D2 , which implies that Z(μ̂Nq,D) = Z(μ̂Nq,D1) ∪Z(μ̂Nq,D2). Then we will 
divide the proof into two cases.

Case 1: gcd(N, L) = 1. For each point x lying in Z(μ̂Nq,D1), there exist a positive integer n and an 
integer k such that x = Nnq · k

N and N � k. From gcd(N, L) = 1, it follows that N � kL. Thus we see that 
x = Nnq · kL ∈ Z(μ̂Nq,D2). This implies that Z(μ̂Nq,D1) ⊂ Z(μ̂Nq,D2), and hence Z(μ̂Nq,D) = Z(μ̂Nq,D2). 
NL
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Therefore it follows from (2.3) that EΛ is an orthonormal set in L2(μNq,D) if and only if EΛ is an orthonormal 
set in L2(μNq,D2). Then μNq,D is a non-spectral measure by Lemma 2.4.

Case 2: gcd(N, L) = d > 1. Let N = N ′d and L = L′d, where gcd(N ′, L′) = 1. Let

D1 = {0, 1, . . . , d− 1} ⊕ d{0, 1, . . . , N ′ − 1} := D1
1 ⊕D2

1.

Then it is easy to see that

Z(μ̂Nq,D1
1
) = ∪∞

n=1N
nq{k

d
: k ∈ Z, d � k}, Z(μ̂Nq,D2

1
) = ∪∞

n=1N
nq{ k

dN ′ : k ∈ Z, N ′ � k}.

For every point x contained in Z(μ̂Nq,D2
1
), there exist a positive integer n and an integer k such that 

x = Nnq · k
dN ′ and N ′ � k. Hence it follows from gcd(N ′, L′) = 1 that N ′ � kL′ and N � kL. This implies 

that x = Nnq · kL
NL ∈ Z(μ̂Nq,D2). Hence we obtain that

Z(μ̂Nq,D2
1
) ⊂ Z(μ̂Nq,D2).

Let μ1 = μNq,D2
1
, and let μ2 = μNq,D1

1
∗ μNq,D2 . Then it is easy to check that μNq,D = μ1 ∗ μ2 and 

Z(μ̂1) ⊂ Z(μ̂2). This implies that Z(μ̂Nq,D) = Z(μ̂2). Using Lemma 2.4 again, we can show that μNq,D is 
also a non-spectral measure in this case. �

In the second, we will prove the sufficiency of Theorem 1.2. In the following, we assume that q � p. Let 
D be defined by (2.4) with L = 1, and let μn = δN−qD ∗ · · · ∗ δN−nqD. Then μn converges weakly to μNq,D, 
and it follows that

μ̂n(ξ) =
n∏

k=1

mD(N−kqξ), ξ ∈ R.

Let C be defined by (2.6), and define

Λn = NqC + N2qC + · · · + NnqC, Λ = ∪∞
n=1Λn. (3.1)

Theorem 3.2. Let μn and Λn are defined in the above. Then Λn is a spectrum of μn if q � p.

Proof. Let Tn =
∑n

k=1 N
−kqD. Then the finite set Tn is the support of the measure μn, and hence the 

dimension of L2(μn) equals to the cardinality of Tn. Moreover, we can claim that the cardinality of Tn

equals to the cardinality of Λn. In fact, we can find a bijective mapping f from Tn to Λn. For each given 
point x lying in Tn, there exist d1, . . . , dn ∈ D such that x =

∑n
k=1 N

−qkdk. Then there exist dk,1, dk,2 ∈
D1 := {0, 1, . . . , N − 1} such that dk = dk,1 + Npdk,2 for 1 ≤ k ≤ n. We define the value of the point x by

f(x) = 1
Np+1

n∑
k=1

Nqk(dn+1−k,1 − 1 + Npdn+1−k,1).

Then we will show that the map f is well defined. Let x′ be contained in Tn, and hence there exist 
d′1, . . . , d

′
n ∈ D such that x′ =

∑n
k=1 N

−qkd′k. Then there exist d′k,1, d′k,2 ∈ D1 such that d′k = d′k,1 +Npd′k,2
for 1 ≤ k ≤ n. Thus it follows that

Np+1

N (n+1)q (f(x) − f(x′)) =
n∑

N−qk(dk,1 + Npdk,2) −
n∑

N−qk(d′k,1 + Npd′k,2) = x− x′.

k=1 k=1
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This implies that f can be well defined in Tn, and f is injective. Noting that Np+1C = (D1 − 1) ⊕NpD1, 
we can easily see that f is a bijective mapping from Tn to Λn.

Therefore we only need to prove that EΛn
is an orthogonal set of L2(μn), i.e., Λn − Λn ∈ Z(μ̂n) ∪ {0}. 

Let σ, σ′ be two different points lying in Λn. Then there exist ik, i′k ∈ D1 − 1, jk, j′k ∈ D1 for 1 ≤ k ≤ n

such that

σ = 1
Np+1

n∑
k=1

Nkq(ik + Npjk), σ′ = 1
Np+1

n∑
k=1

Nkq(i′k + Npj′k).

Then it follows that

σ − σ′ =
n∑

k=1

Nkq ik − i′k
Np+1 +

n∑
m=1

Nmq jm − j′m
N

.

By calculations, we have

Z(μ̂n) = ∪n
k=1N

qk{ k

N
: k ∈ Z, N � k} ∪ ∪n

k=1N
qk{ k

Np+1 : k ∈ Z, N � k}. (3.2)

Then we can give the proof into three cases.
Case 1: ik = i′k for all 1 ≤ k ≤ n. Let k1 = min{k : jk 
= j′k, 1 ≤ k ≤ n}. Then k1 can be well defined, 

and it follows that

σ − σ′ =
n∑

k=k1

Nkq jk − j′k
N

= Nk1q
(jk1 − j′k1

N
+

n∑
k=k1+1

N (k−k1)q−1(jk − j′k)
)
.

It is easy to check that jk1 − j′k1
/∈ NZ and N (k−k1)q−1(jk − j′k) ∈ Z for k ≥ k1 + 1. Hence it follows from 

(3.2) that σ − σ′ ∈ Z(μ̂n).
Case 2: jk = j′k for all 1 ≤ k ≤ n. Let k2 = min{k : ik 
= i′k, 1 ≤ k ≤ n}. Then k2 can be well defined, 

and it follows that

σ − σ′ =
n∑

k=k2

Nkq ik − i′k
Np+1 = Nk2q ·N−(p+1)(ik2 − i′k2

+
n∑

k=k2+1

N (k−k2)q(ik − i′k)
)
.

It is easy to check that ik2 − i′k2
/∈ NZ and N (k−k2)q(ik − i′k) ∈ NZ for k ≥ k2 + 1. Hence it follows from 

(3.2) that σ − σ′ ∈ Z(μ̂n).
Case 3: ik 
= i′k and jl 
= j′l for two integers k, l ∈ [1, n]. Let k1 = min{k : ik 
= i′k, 1 ≤ k ≤ n}, and 

k2 = min{k : jk 
= j′k, 1 ≤ k ≤ n}. Then it follows that

σ − σ′ =
n∑

k=k1

Nkq ik − i′k
Np+1 +

n∑
k=k2

Nkq jk − j′k
N

. (3.3)

Let p = mq + r with the integer r ∈ [1, q − 1]. We will divide this case into two subcases.
Subcase I: k1 > m + k2. It follows from (3.3) that

σ − σ′ = Nk2q

(
jk2 − j′k2

N
+

n∑
k=k1

N (k−k2−m)q−(r+1)(ik − i′k) +
n∑

k=k2+1

N (k−k2)q−1(jk − j′k)
)
.

Noting that jk2 − j′k /∈ NZ, and using (3.2), we can obtain that σ − σ′ ∈ Z(μ̂n).

2
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Subcase II: k1 ≤ m + k2. It follows from (3.3) that

σ − σ′ = Nk1q · 1
Np+1

(
ik1 − i′k1

+
n∑

k=k1+1

N (k−k1)q(ik − i′k) +
n∑

k=k2

N (k−k1)q+p(jk − j′k)
)
.

For k ≥ k2, it follows that

N (k−k1)q+p = N (k−k1+m)q+r = Nr ·N (m+k−k1)q ∈ NZ.

Noting that ik1 − i′k1
/∈ NZ, and using (3.2), we conclude that σ − σ′ ∈ Z(μ̂n). �

In the similar way, it is easy to check that EΛ is also an orthonormal set of L2(μNq,D). Moreover, we will 
show that EΛ is an orthonormal basis of L2(μNq,D) in the following theorem.

Theorem 3.3. Let D be defined by (2.4) with L = 1. If q � p, then μNq,D is a spectral measure.

Proof. Let Λn and Λ be defined by (3.1). Then we will show that Λ is a spectral of μNq,D. Let

Qn(ξ) =
∑
λ∈Λn

|μ̂Nq,D(ξ + λ)|2, Q(ξ) =
∑
λ∈Λ

|μ̂Nq,D(ξ + λ)|2.

For every n ≥ 1, making use of (2.1) and the definition of μn, we have the following equality:

Q2n(ξ) = Qn(ξ) +
∑

λ∈Λ2n\Λn

|μ̂Nq,D(ξ + λ)|2

= Qn(ξ) +
∑

λ∈Λ2n\Λn

|μ̂2n(ξ + λ)|2|μ̂Nq,D(ξ + λ

N2nq )|2.

Next, we will prove that Q(ξ) ≡ 1. Since Q is an entire function, we only need to determine the value of 
Q(ξ) for |ξ| ≤ η (< 1), where η is the same as Proposition 2.2. Obviously, N−2nqλ ∈ T (Nq, C), if λ ∈ Λ2n. 
This implies that for |ξ| ≤ η,

dist(ξ + λ

N2nq , T (Nq, C)) ≤ |ξ|
N2nq ≤ η.

From Proposition 2.2 and Theorem 3.2, it follows that

Q2n(ξ) ≥ Qn(ξ) + c2
∑

λ∈Λ2n\Λn

|μ̂2n(ξ + λ)|2

= Qn(ξ) + c2(1 −
∑
λ∈Λn

|μ̂2n(ξ + λ)|2). (3.4)

For every point λ contained in Λn, it follows that

N−2nq|ξ + λ| ≤ N−2nq
(

1 + (Np + 1)(N − 1)(Nq + N2q + · · · + Nnq)
Np+1

)
< N−(n−1)q.

Define ln = min|ξ|≤N−nq |μ̂Nq,D(ξ)| for n ∈ N. Then it follows that limn→∞ ln = 1. Hence we can obtain 
that
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|μ̂Nq,D(ξ + λ)| = |μ̂2n(ξ + λ)||μ̂Nq,D(ξ + λ

N2nq )| ≥ ln−1|μ̂2n(ξ + λ)|. (3.5)

By (3.4) and (3.5), we get

Q2n(ξ) ≥ Qn(ξ) + c2(1 − 1
ln−1

Qn(ξ)).

Letting n → ∞, we can obtain that Q(ξ) ≥ Q(ξ) +c2(1 −Q(ξ)). Since EΛ is an orthonormal set of L2(μNq,D), 
it holds that Q(ξ) ≤ 1 for every point ξ ∈ R. This implies that Q(ξ) ≡ 1 for |ξ| ≤ η. Therefore we complete 
the proof of this theorem. �
Remark 3.4. Let R = Nq, and let D be defined by (2.4). If gcd(L, N) = 1, we conjecture that Theorem 3.3
is also true. However, if gcd(L, N) > 1, then μR,D maybe a non-spectral measure even though q � p. For 
example, let N = 4, p = 5 and q = L = 2. Although 2 � 5, we can claim that the measure μNq,D is a 
non-spectral measure. In fact, D and R can be rewritten as D = {0, 1} ⊕ 2{0, 1} ⊕ 211{0, 1} ⊕ 212{0, 1} and 
R = 24. Hence it follows that

μR,D = μ24,{0,1} ∗ μ24,2{0,1} ∗ μ24,211{0,1} ∗ μ24,212{0,1} := μ1 ∗ μ2 ∗ μ3 ∗ μ4.

By (2.5), we have

Z(μ̂1) = ∪∞
n=124n{k2 : k ∈ 2Z + 1}, Z(μ̂4) = ∪∞

n=124(n−3){k2 : k ∈ 2Z + 1}.

Then it is easy to check that Z(μ̂1) ⊂ Z(μ̂4) ⊂ Z(μ̂5), where μ5 := μ2 ∗ μ3 ∗ μ4. Using μ̂1 ∗ μ5 = μ̂1 · μ̂5, 
we can see that Z(μ̂R,D) = Z(μ̂5). Let EΛ be an orthonormal set in L2(μR,D). Then it follows from (2.3)
that EΛ must be an orthonormal set in L2(μ5). Noting that μR,D = μ1 ∗μ5, and making use of Lemma 2.4, 
Λ cannot be a spectrum of μR,D, i.e., EΛ cannot be an orthonormal basis of L2(μR,D). Since EΛ is arbitrary, 
our claim is true.

In the last, we will prove the following proposition to complete the proof of Corollary 1.3.

Proposition 3.5. Let R = N2, and let D be defined by (2.4) with gcd(L, N) = 1. Then T (R, D) is a 
translational tile if and only if 2 � p.

Proof. We will use Lemma 2.5 to prove this proposition. Firstly, we will prove the sufficiency. Assume 
that 2 � p. By (2.8), we only need to show that for any s ∈ Z \ {0}, there exists an integer k such that 
hk(s) := mD( s

N2k ) = 0, i.e.,

s

N2k ∈ Z(mD) := {m
N

: N � m} ∪ { m

Np+1L
: N � m}.

In fact, there exist nonnegative integers n and s′ such that s = Nns′ with N � s′. If n ∈ 2N + 1, we can 
choose k = n+1

2 . Then it follows that s
N2k = s′

N ∈ Z(mD). If n ∈ 2N, we can choose k = n+p+1
2 . Noting 

that 2 � p and gcd(L, N) = 1, we obtain that s
N2k = s′L

Np+1L ∈ Z(mD). Therefore we complete the proof the 
sufficiency.

Secondly, we will prove the necessity. Assume that 2 | p. Let s0 = N2. Then we only need to prove that 
s0

N2k is not contained in Z(mD) for each integer k ≥ 1. Otherwise, there exist integers k0 ≥ 1 and m with 
N � m such that

s0 = m or s0 = m
.

N2k0 N N2k0 Np+1L
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Obviously, the above two equalities can not hold since p ∈ 2Z. This shows that D is not a tile digit set of 
R if 2 | p. �
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