期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:479
Concentrating solutions for a magnetic Schrodinger equation with critical growth
Article
Ambrosio, Vincenzo1 
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词: Magnetic Laplacian;    Variational methods;    Critical growth;   
DOI  :  10.1016/j.jmaa.2019.06.070
来源: Elsevier
PDF
【 摘 要 】

We deal with the following nonlinear Schrodinger equation with magnetic field and critical growth: {epsilon/iota del - A(x)(2) u + V(x)u = f(vertical bar u vertical bar(2))u + vertical bar u vertical bar(2)*(-2) u in R-N, u is an element of H-1 (R-N, C), where epsilon > 0 is a small parameter, N >= 3, 2* = 2N/N-2 is the critical Sobolev exponent, A is an element of C-1 (R-N, R-N) is a magnetic vector potential, V : R-N -> R is a continuous positive potential having a local minimum and f : R -> R is a superlinear continuous function with subcritical growth. Using penalization techniques and variational methods, we investigate the existence and concentration of nontrivial solutions for epsilon > 0 small enough. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_06_070.pdf 1191KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次