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We deal with the following nonlinear Schrödinger equation with magnetic field and 
critical growth:

{ (
ε
ı
∇− A(x)

)2
u + V (x)u = f(|u|2)u + |u|2∗−2u in RN ,

u ∈ H1(RN ,C),

where ε > 0 is a small parameter, N ≥ 3, 2∗ = 2N
N−2 is the critical Sobolev exponent, 

A ∈ C1(RN , RN ) is a magnetic vector potential, V : RN → R is a continuous 
positive potential having a local minimum and f : R → R is a superlinear continuous 
function with subcritical growth. Using penalization techniques and variational 
methods, we investigate the existence and concentration of nontrivial solutions for 
ε > 0 small enough.

© 2019 Published by Elsevier Inc.

1. Introduction

The aim of this paper is to study the existence and concentration of nontrivial complex-valued solutions 
for the following nonlinear Schrödinger equation with critical growth:

{ (
ε
ı∇−A(x)

)2
u + V (x)u = f(|u|2)u + |u|2∗−2u in RN ,

u ∈ H1(RN ,C),
(1.1)

where ε > 0 is a small parameter, N ≥ 3, 2∗ = 2N
N−2 is the critical Sobolev exponent, A ∈ C1(RN , RN ) is a 

magnetic vector potential, V ∈ C(RN , R) is an electric potential and f : R → R is a subcritical nonlinearity. 
Here the magnetic Schrödinger operator is defined by
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(ε
ı
∇−A(x)

)2
u = − ε2 Δu− 2 ε

ı
A · ∇u + |A|2u− ε

ı
u divA.

When N = 3, the magnetic field B is the usual curl operator of A, while for higher dimensions N ≥ 4 it is 
the 2-form given by Bi,j := ∂jAk − ∂kAj with 1 ≤ j, k ≤ N . The main driving force for studying (1.1) is 
related to the following time-dependent Schrödinger equation:

ı�
∂Ψ
∂t

=
(ε
ı
∇−A(x)

)2
Ψ + U(z)ψ − g(x, |Ψ|2)Ψ in RN ×R, (1.2)

when we look for standing waves, that is, solutions having the form Ψ(x, t) = u(x)e− ıct
� , where � is the 

Planck’s constant and E ∈ R. In fact, it is clear that Ψ solves (1.2) if and only if u satisfies (1.1), with ε = �, 
V (x) = U(x) −E and g(x, |u|2)u = f(|u|2)u + |u|2∗−2u. Equation (1.2) appears in quantum mechanics and 
describes the dynamics of a particle in a non-relativistic setting. It arises in different physical theories, e.g., 
the description of Bose-Einstein condensates and nonlinear optics; see [9,30] for more physical background. 
Indeed, the analysis of the existence and shape of standing wave solutions in the semiclassical regime, that 
is, as � → 0, is motivated by the fact that the transition from Quantum Mechanics to Classical Mechanics 
can be formally performed by sending the Planck’s constant to zero.

In recent years, a great attention has been devoted to the nonlinear Schrödinger equations without 
the magnetic field (i.e. A ≡ 0) and for which several existence, multiplicity and qualitative property of 
standing wave solutions have been established, see [3,4,11,16,18,21–23,29] and the references therein. On 
the other hand, when we consider the case A �= 0, the first result is probably due to Esteban and Lions 
[20] that used the concentration-compactness principle [27] and minimization arguments to establish the 
existence of a ground state solution in dimensions N = 2 or N = 3. Subsequently, Kurata [25] proved, 
via variational methods, that a subcritical magnetic Schrödinger equation has a least energy solution for 
any ε > 0, assuming a technical condition linking V and A. Chabrowski and Szulkin [13] applied minimax 
arguments to deduce the existence of nontrivial solutions for a critical magnetic Schrödinger equation when 
the potential V changes sign. In [14,15] the authors used Ljusternik-Schnirelmann theory to obtain multiple 
solutions for a subcritical magnetic Schrödinger equation assuming the following global condition on the 
potential V proposed by Rabinowitz [29]:

inf
x∈RN

V (x) < lim inf
|x|→∞

V (x).

Alves et al. [6] combined penalization technique and Ljusternik-Schnirelmann theory to relate the number 
of solutions with the topology of the set where the potential attains its minimum value. They considered 
subcritical nonlinearities and assumed local conditions on V inspired by the following conditions introduced 
by del Pino and Felmer [18]:

(V1) there exists V1 > 0 such that V1 = infx∈RN V (x),
(V2) there exists a bounded open set Λ ⊂ RN such that

0 < V0 = inf
x∈Λ

V (x) < min
x∈∂Λ

V (x).

We also mention the papers [5,8,10,17,19] for other interesting results related to (1.1).
Motivated by the above papers, in this work we focus our attention on the existence and concentration of 

nontrivial solutions for a magnetic Schrödinger equation with critical growth. Along the paper, we suppose 
that the nonlinearity f : R → R is a continuous function such that f(t) = 0 for t ≤ 0 and satisfies the 
following conditions:

(f1) f(t) → 0 as t → 0+,
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(f2) there exist q, σ ∈ (2, 2∗) and λ > 0 such that

f(t) ≥ λt
q−2
2 ∀t > 0, lim

t→∞
f(t)
t
σ−2

2
= 0,

where λ is such that
• λ > 0 if either N ≥ 4, or N = 3 and 4 < q < 6,
• λ is sufficiently large if N = 3 and 2 < q ≤ 4,

(f3) there exists ϑ ∈ (2, σ) such that 0 < ϑ
2F (t) ≤ tf(t) for all t > 0, where F (t) =

∫ t

0 f(s) ds,
(f4) the map t �→ f(t) is increasing in (0, ∞).

Our main result can be stated as follows:

Theorem 1.1. Assume that (V1)-(V2) and (f1)-(f4) hold. Then, there exists ε0 > 0 such that, for all ε ∈
(0, ε0), problem (1.1) admits a nontrivial solution uε. Moreover, if xε ∈ RN denotes a global maximum point 
of |uε|, then

lim
ε→0

V (xε) = V0.

The proof of Theorem 1.1 is obtained using suitable variational arguments. Since we do not have infor-
mations on the behavior of V at infinity, we use a variant of the penalization argument introduced in [18]
which consists in modifying appropriately the nonlinearity outside the set Λ, solving a modified problem and 
then check that, for ε > 0 small enough, the solutions of the modified problem are indeed solutions of the 
original one. We emphasized that, even for the modified problem, it is rather tough to obtain compactness 
in view of the critical growth of the nonlinearity. Indeed, compared with the subcritical case considered in 
[6], a more careful analysis will be needed to overcome this obstacle. More precisely, after proving that the 
modified energy functional has a mountain pass geometry [7], we use a suitable truncated complex-value 
function inspired by Brezis and Nirenberg [12], which takes care of the presence of the magnetic field A, and 
the concentration-compactness principle of Lions [27], to verify that the Palais-Smale condition is regained 
below a suitable level related to the best constant of the Sobolev embedding H1(RN , R) into L2∗(RN , R); 
see Lemma 3.2 and Lemma 3.3. Finally, making use of the diamagnetic inequality [20] and Kato’s inequality 
[24], we show that the solutions of the modified problem are solutions of the original one; see Lemma 3.6. 
To the best of our knowledge, this is the first time that the penalization argument is used to obtain the 
existence and concentration of solutions to (1.1) under local conditions (V1)-(V2).

The paper is organized as follows. In Section 2 we give the notations and collect some useful preliminary 
results. In Section 3 we introduce the modified problem and we prove the existence of a positive solution 
for it via mountain pass theorem [7]. In Section 4 we give the proof of Theorem 1.1.

2. Preliminaries

Let us denote by BR(x) the ball of radius R and center at x. When x = 0, we write BR = BR(0). Let 
1 ≤ r ≤ ∞ and A ⊂ RN . We denote by |u|Lr(A) the Lr(A)-norm of a function u : RN → R belonging to 
Lr(A), and by |u|q its Lq(RN )-norm. We define D1,2(RN , R) as the closure of C∞

c (RN , R) with respect to

|∇u|22 =
∫
RN

|∇u|2dx.

Let us denote by H1(RN , R) the set of functions u : RN → R such that u, ∇u ∈ L2(RN , R) endowed with 
the usual norm
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‖u‖2 = |∇u|22 + |u|22.

We remark (see [1]) that there exists a sharp constant S∗ > 0 such that for any u ∈ D1,2(RN , R)

|u|22∗ ≤ S−1
∗ |∇u|22.

Moreover, H1(RN , R) is continuously embedded in Lq(RN , R) for any q ∈ [2, 2∗] and compactly in 
Lq
loc(RN , R) for any q ∈ [1, 2∗). We recall the following compactness-Lions type result [26]:

Lemma 2.1. Let N ≥ 3 and r ∈ [2, 2∗). If {un}n∈N is a bounded sequence in H1(RN , R) and if

lim
n→∞

sup
y∈RN

∫
BR(y)

|un|rdx = 0, (2.1)

where R > 0, then un → 0 in Lt(RN , R) for all t ∈ (2, 2∗).

In what follows, we collect some useful estimates which will be needed to overcome the difficulty coming 
from the critical exponent.

For any ε > 0 and y ∈ RN , we consider the following family of instantons (see [31])

Uε,y(x) = ε−
(N−2)

2 U

(
x− y

ε

)
, U(x) = (N(N − 2))N−2

4

(1 + |x|2)N−2
2

where U ∈ D1,2(RN , R) is a solution to

−ΔU = U2∗−1 in RN .

Moreover, we have |∇U |22 = |U |2∗
2∗ = S

N
2∗ .

Let ψ be a C1(RN , R) function such that ψ(x) = 1 in |x − y| ≤ δ
2 and ψ(x) = 0 if |x − y| > δ. Let 

w̃ε,y = ψUε,y and wε,y = w̃ε,y

|wε,y|2∗ . Then, arguing as in [12], we can prove that:

Lemma 2.2. The following estimates for wε,y hold true:

|∇wε,y|22 = S∗ + O(εN−2),

|wε,y|22 =

⎧⎪⎨
⎪⎩

O(ε2) if N > 4,
O(ε2 log(1

ε )) if N = 4,
O(ε) if N = 3,

and

|wε,y|qq ≥

⎧⎪⎨
⎪⎩

O(εN− (N−2)
2 q) if q > N

N−2 ,

O(εN− (N−2)
2 q log(1

ε )) if q = N
N−2 ,

O(ε
(N−2)q

2 ) if q < N
N−2 .

In order to study (1.1), it is important to introduce the Hilbert space Hε = Hε(RN , C) obtained by the 
closure of C∞

c (RN , C) under the scalar product

(u, v)ε = �

⎛
⎝ ∫

∇εu∇εv + V (ε x)uv̄dx

⎞
⎠ ,
RN
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where �(w) denotes the real part of w ∈ C, w̄ is its conjugate, ∇εu = (D1
εu, . . . , D

N
ε u) and Dj

εu =
ı−1∂ju −Aj(ε x)u for j = 1, . . . , N . The norm induced by this inner product is given by

‖u‖2
ε =

∫
RN

|∇εu|2 + V (ε x)|u|2dx.

As proved in [20], for any u ∈ Hε it holds the following diamagnetic inequality:

|∇|u|| ≤ |∇εu|. (2.2)

Consequently, if u ∈ Hε then |u| ∈ H1(RN , R). Moreover, the embedding Hε ⊂ Lq(RN , C) is continuous for 
all q ∈ [2, 2∗] and Hε ⊂ Lq(Λ, C) is compact for all q ∈ [1, 2∗). We also recall the following distributional 
Kato’s inequality [24] (see also Theorem X.33 in [30]):

Δ|u| ≥ −�(sign(u)D2
εu) ∀u ∈ Hε, (2.3)

where D2
ε =

∑N
j=1(Dj

ε)2 and

sign(u) =
{

ū
|u| if u �= 0
0 if u = 0.

3. Variational setting

Using the change of variable x �→ ε x, we can see that the study of (1.1) is equivalent to investigate the 
following problem

{ ( 1
ı∇−Aε(x)

)2
u + Vε(x)u = f(|u|2)u + |u|2∗−2u in RN ,

u ∈ H1(RN ,C),
(3.1)

where Aε(x) = A(ε x) and Vε(x) = V (ε x). Now, we introduce a penalized function [18] which will be useful 
to obtain our results. First of all, without loss of generality, we may assume that

0 ∈ Λ and V (0) = V0 = min
Λ

V.

Take K > ϑ
ϑ−2 > 1 and a > 0 such that f(a) + a

2∗−2
2 = V1

K , and we define

f̃(t) =
{

f(t) + (t+) 2∗−2
2 if t ≤ a,

V1
K if t > a,

and

g(x, t) = χΛ(x)(f(t) + (t+)
2∗−2

2 ) + (1 − χΛ(x))f̃(t) and G(x, t) =
t∫

0

g(x, s) ds.

It is easy to check that g satisfies the following properties:

(g1) lim
t→0

g(x, t) = 0 uniformly with respect to x ∈ RN ,

(g2) g(x, t) ≤ f(t) + t
2∗−2

2 for all x ∈ RN , t > 0,
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(g3) (i) 0 < ϑ
2G(x, t) < g(x, t)t for all x ∈ Λ and t > 0,

(ii) 0 ≤ G(x, t) < g(x, t)t ≤ V1
K t for all x ∈ RN \ Λ and t > 0,

(g4) for each x ∈ Λ the function g(x, t) is increasing in (0, ∞), and for each x ∈ RN \Λ the function g(x, t)
is increasing in (0, a).

Then, we consider the following modified problem
(

1
ı
∇−Aε(x)

)2

u + Vε(x)u = g(ε x, |u|2)u in RN . (3.2)

In view of the definition of g, we look for weak solutions to (3.2) having the property

|u(x)| ≤
√
a ∀x ∈ RN \ Λε,

where Λε = Λ/ ε. In order to study (3.2), we seek the critical points of the following functional Jε : Hε → R

defined as

Jε(u) = 1
2‖u‖

2
ε −

1
2

∫
RN

G(ε x, |u|2) dx.

By the growth assumptions on f and Sobolev embeddings for Hε, it is easy to check that Jε ∈ C1(Hε, R)
and its differential is given by

〈J ′
ε(u), v〉 = �

⎛
⎝ ∫

RN

∇εu∇εv + Vεuv̄dx−
∫
RN

g(ε x, |u|2)uv̄ dx

⎞
⎠

for any u, v ∈ Hε. Let us note that Jε possesses a mountain pass geometry [7]:

Lemma 3.1. The functional Jε satisfies the following properties:

(a) there exist α, ρ > 0 such that Jε(u) ≥ α with ‖u‖ε = ρ;
(b) there exists e ∈ Wε such that ‖e‖ε > ρ and Jε(e) < 0.

Proof. (a) By (g1), (g2), (f2), we can see that for any ξ > 0 there exists Cξ > 0 such that

|g(x, t)| ≤ ξ + Cξ|t|
2∗−2

2 for any (x, t) ∈ RN ×R. (3.3)

Therefore, we obtain that

Jε(u) ≥ 1
2‖u‖

2
ε −

1
2

∫
RN

G(ε x, |u|2) dx ≥ 1
2‖u‖

2
ε − ξC‖u‖2

ε − CξC‖u‖2∗

ε .

Hence we can find α, ρ > 0 such that Jε(u) ≥ α with ‖u‖ε = ρ.
(b) By (g3)-(i) we can see that for any u ∈ C∞

c (RN , C) such that u �≡ 0 and supp(u) ⊂ Λ

Jε(τu) ≤ τ2

2 ‖u‖2
ε −

1
2

∫
Λε

G(ε x, |τu|2) dx

≤ τ2

2 ‖u‖2
ε − C1τ

ϑ

∫
Λε

|u|ϑ dx + C2 ∀τ > 0, (3.4)
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for some positive constants C1 and C2. Since ϑ ∈ (2, 2∗), we get Jε(τu) → −∞ as τ → +∞. �
In view of Lemma 3.1, we can define the minimax level

cε = inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t)), where Γε = {v ∈ Hε : Jε(0) = 0,Jε(γ(1)) ≤ 0}.

As in [32], we can use the equivalent characterization of cε more appropriate to our aim given by

cε = inf
u∈Hε\{0}

max
t≥0

Jε(tu).

In order to obtain the existence of a nontrivial solution to (3.2), we need to prove the next fundamental 
result.

Lemma 3.2. There exists v ∈ Hε \ {0} such that

max
t≥0

Jε(tv) <
1
N

S
N
2∗ .

In particular, cε < 1
N S

N
2∗ .

Proof. Set wh = wh,0, with wh,y defined as in Section 2, and we consider uh(x) = eıθ(x)wh(x), where 
θ(x) = − 

∑N
j=1 Aj(0)xj . Then, (A +∇θ)(0) = 0 and by the continuity of A at 0 we have |(A +∇θ)(x)|2 < c

for all |x| < δ1, with δ1 > 0 sufficiently small. Assume that supp(ψ) ⊂ B r
ε

where r = min{δ, δ1} and δ > 0
is such that Bδ ⊂ Λ. We note that

∫
RN

|∇εuh|2 + Vε|uh|2dx =
∫
RN

|∇wh|2 + w2
h|Aε + ∇θ|2 + Vεw

2
h dx

≤
∫
RN

|∇wh|2 + (c + |V |L∞(Λ))|wh|2 dx. (3.5)

Then, using (f2), we can see that

Jε(tuh) = t2

2 ‖uh‖2
ε −

1
2

∫
RN

F (t|uh|2) dx− t2
∗

2∗ |uh|2
∗

2∗

≤ t2

2
(
|∇εuh|22 + |V |L∞(Λ)|uh|22

)
− λtq|uh|qq −

t2
∗

2∗ |uh|2
∗

2∗ → −∞ as t → ∞,

so there exists th > 0 such that

Jε(thuh) = max
t≥0

Jε(tuh).

Let us show that there exist A, B > 0 such that

A ≤ th ≤ B for h > 0 sufficiently small. (3.6)

Since 〈J ′
ε(thuh), uh〉 = 0, we deduce that
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‖uh‖2
ε =

∫
RN

f(|thuh|2)|uh|2 dx + (th)2
∗−2|uh|2

∗

2∗ . (3.7)

If thn
→ ∞ as hn → 0, by (3.7) it follows that

‖uhn
‖2
ε ≥ (thn

)2
∗−2|uhn

|2∗

2∗ ,

which gives a contradiction in view of 2∗ > 2 and Lemma 2.2.
Now, assume that there exists t′hn

→ 0 as hn → 0. From (f1), (f2) and (V1) we can see that for any ξ > 0
there exists Cξ > 0 such that

∫
RN

f(|t′hn
uhn

|2)|uhn
|2 dx ≤ ξ|uhn

|22 + Cξ(t′hn
)2

∗−2|uhn
|2∗

2∗

≤ ξ

V1
‖uhn

‖2
ε + Cξ(t′hn

)2
∗−2|uhn

|2∗

2∗ . (3.8)

Choosing ξ = V1
2 , and using (3.7) and (3.8), we obtain

1
2‖uhn

‖2
ε ≤ Cξ(t′hn

)2
∗−2|uhn

|2∗

2∗ + (t′hn
)2

∗−2|uhn
|2∗

2∗

which leads to an absurd. Therefore, (3.6) holds true.
Now, we note that for C, D > 0 it holds

t2

2 C − t2
∗

2∗ D ≤ 1
N

(
C

D
N−2
N

)N
2

for all t ≥ 0.

Thus, using (3.5) and (3.6), we get

Jε(thuh) ≤ t2h
2 ‖uh‖2

ε − λtqh|uh|qq −
t2

∗

h

2∗ |uh|2
∗

2∗

≤ 1
N

( |∇wh|22 + (c + |V |L∞(Λ))|wh|22
|wh|22∗

)N
2

− λAq|wh|qq.

In the light of the following elementary inequality

(a + b)r ≤ ar + r(a + b)r−1b for all a, b > 0, r ≥ 1,

and gathering the estimates in Lemma 2.2, we can deduce that

Jε(thuh) ≤

⎧⎪⎪⎨
⎪⎪⎩

1
N S

N
2∗ + O(hN−2) + O(h2) − λAq|wh|qq if N > 4,

1
N S

N
2∗ + O

(
h2 (1 + log(1/h))

)
− λAq|wh|qq if N = 4,

1
N S

N
2∗ + O(h) − λAq|wh|qq if N = 3.

At this point we distinguish several cases. Let N > 4. Then q > 2 > N
N−2 and using Lemma 2.2 we have

Jε(thuh) ≤ 1
N

S
N
2∗ + O(hN−2) + O(h2) −O(hN− (N−2)

2 q).

Now
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N − (N − 2)
2

q < 2 < N − 2,

because of q > 2 and N > 4, so we can infer that

Jε(thuh) < 1
N

S
N
2∗ ,

provided that h > 0 is sufficiently small.
Assume that N = 4. Thus, q > 2 = N

N−2 and in view of Lemma 2.2 we obtain

Jε(thuh) ≤ 1
N

S
N
2∗ + O

(
h2 (1 + log(1/h))

)
−O(h4−q),

and observing that 2 < q < 2∗ = 4 yields

lim
h→0

h4−q

h2 (1 + log(1/h)) = ∞,

we get the conclusion for h small enough.
Finally, we consider the case N = 3. Suppose that 4 < q < 6. Then,

q > 4 > 1 = N

N − 2

from which

Jε(thuh) ≤ 1
N

S
N
2∗ + O(h) −O(h3− q

2 ).

Using the fact that 4 < q < 6 implies that 0 < 3 − q
2 < 1, we have for h > 0 small enough

Jε(thuh) < 1
N

S
N
2∗ .

Now, we assume that N = 3 and 2 < q < 4.
When 2 < q < 3 then, for h > 0 small, it holds

Jε(thuh) ≤ 1
N

S
N
2∗ + O(h) − λO(h

q
2 )

and noting that q2 > 1, we can take λ = h−μ, with μ > q−2
2 , to get the thesis for h > 0 small.

If q = 3, then

Jε(thuh) ≤ 1
N

S
N
2∗ + O(h) − λO(h 3

2 | log(h)|)

and taking λ = h−μ, with μ > 1
2 , we can deduce the thesis.

When 3 < q ≤ 4, we have

Jε(thuh) ≤ 1
N

S
N
2∗ + O(h) − λO(h3− q

2 )

and choosing λ = h−μ, with μ > 2 − q
2 , we have again the desired estimate. �

In the next lemma, we prove that Jε satisfies a local compactness condition. More precisely:
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Lemma 3.3. Let c ∈ R be such that c < 1
N S

N
2∗ . Then Jε fulfills the Palais-Smale condition at the level c.

Proof. Let {un}n∈N be a (PS)c sequence at the level c < 1
N S

N
2∗ , that is

Jε(un) → c and J ′
ε(un) → 0 in H∗

ε .

In view of (g3), we can deduce that

c + on(1)‖un‖ε = Jε(un) − 1
ϑ
〈J ′

ε(un), un〉

=
(
ϑ− 2
2ϑ

)
‖un‖2

ε + 1
ϑ

∫
RN\Λε

[g(ε x, |un|2)|un|2 −
ϑ

2G(ε x, |un|2)] dx

+ 1
ϑ

∫
Λε

[f(|un|2)|un|2 −
ϑ

2F (|un|2)] dx +
(

1
ϑ
− 1

2∗

)∫
Λε

|un|2
∗
dx

≥
(
ϑ− 2
2ϑ

)
‖un‖2

ε + 1
ϑ

∫
RN\Λε

[g(ε x, |un|2)|un|2 −
ϑ

2G(ε x, |un|2)] dx

≥
(
ϑ− 2
2ϑ

)
‖un‖2

ε −
(
ϑ− 2
2ϑ

)
1
K

∫
RN\Λε

V (ε x)|un|2dx

≥
(
ϑ− 2
2ϑ

)(
1 − 1

K

)
‖un‖2

ε.

Since ϑ > 2 and K > 1, we can conclude that {un}n∈N is bounded in Hε. Moreover, from (2.2), we know 
that {|un|}n∈N is bounded in H1(RN , R). Taking into account 〈J ′

ε(un), un〉 = on(1), we can see that

‖un‖2
ε =

∫
RN

g(ε x, |un|2)|un|2 dx + on(1). (3.9)

On the other hand, it is easy to check that

(un, ϕ)ε → (u, ϕ)ε,

�

⎛
⎝ ∫

RN

g(ε x, |un|2)unϕ̄ dx

⎞
⎠ → �

⎛
⎝ ∫

RN

g(ε x, |u|2)uϕ̄ dx

⎞
⎠ ,

for all ϕ ∈ C∞
c (RN , C), which together with J ′

ε(un) → 0 and the density of C∞
c (RN , C) in Hε, implies that 

〈J ′
ε(u), ϕ〉 = 0 for all ϕ ∈ Hε. In particular,

‖u‖2
ε =

∫
RN

g(ε x, |u|2)|u|2 dx. (3.10)

Hence, in view of (3.9) and (3.10), it is enough to show that

∫
RN

g(ε x, |un|2)|un|2 dx =
∫
RN

g(ε x, |u|2)|u|2 dx + on(1) (3.11)
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to deduce that ‖un‖2
ε → ‖u‖2

ε which together with the fact that Hε is a Hilbert space yields un → u in Hε. 
In order to achieve our goal, we first prove that for all η > 0 there exists R = Rη > 0 such that

lim sup
n→∞

∫
Bc

R

|∇εun|2 + Vε|un|2 dx < η. (3.12)

Let us consider the function ηR ∈ C∞(RN ) defined as

ηR(x) =
{

0 if x ∈ BR,

1 if x /∈ B2R,

and |∇ηR|∞ ≤ C/R. Take R > 0 sufficiently large such that Λε ⊂ BR. Since 〈J ′
ε(un), ηRun〉 = on(1) and

∇ε(unηR) = ıun∇ηR + ηR∇εun,

we can use (g3) to get

∫
RN

(|∇εun|2 + Vε|un|2)ηR dx ≤ 1
K

∫
RN

Vε|un|2ηR dx + �

⎛
⎝ ∫

RN

−ıūn∇εun∇ηR dx

⎞
⎠ + on(1).

By the Hölder inequality and the boundedness of {un}n∈N in Hε we deduce that
∫
RN

|∇εun|2ηR dx +
(

1 − 1
K

) ∫
RN

Vε|un|2ηR dx ≤ |ūn|2|∇εun|2|∇ηR|∞ + on(1)

≤ C

R
+ on(1),

from which

lim
R→∞

lim sup
n→∞

∫
Bc

R

|∇εun|2 + Vε|un|2 dx = 0,

that is (3.12) holds true.
Using (3.12), (g2), (f1), (f2) and the Sobolev embeddings, we obtain that for n large enough,

∫
RN\BR

g(ε x, |un|2)|un|2 dx ≤ C(η + η
q
2 + η

2∗
2 ). (3.13)

On the other hand, taking R large enough, we can suppose that
∫

RN\BR

g(ε x, |u|2)|u|2 dx < η.

The above expression and (3.13) imply that for n large
∣∣∣∣∣∣∣

∫
N

g(ε x, |un|2)|un|2 −
∫

N

g(ε x, |u|2)|u|2 dx

∣∣∣∣∣∣∣ < Cη. (3.14)

R \BR R \BR
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Now, we note that, in view of the definition of g, there holds

g(ε x, |un|2)|un|2 ≤ f(|un|2)|un|2 + a2∗
+ V1

K
|un|2 in RN \ Λε.

Since the set BR ∩ (RN \ Λε) is bounded, we can use the above estimate, (f1), (f2) and the dominated 
convergence theorem to conclude that

∫
BR∩(RN\Λε)

g(ε x, |un|2)|un|2 =
∫

BR∩(RN\Λε)

g(ε x, |u|2)|u|2 dx + on(1). (3.15)

In what follows, we aim to show that
∫
Λε

|un|2
∗
dx =

∫
Λε

|u|2∗
dx + on(1). (3.16)

Indeed, if we assume that (3.16) holds true, we can use (g2), (f1), (f2) and the dominated convergence 
theorem to deduce that ∫

Λε

g(ε x, |un|2)|un|2 =
∫
Λε

g(ε x, |u|2)|u|2 dx + on(1). (3.17)

Therefore, (3.11) is a direct consequence of the above expression, (3.15) and (3.17).
Now, we show the validity of (3.16). Using the boundedness of {un}n∈N in Hε and (2.2), we may assume 

that

|∇|un||2 ⇀ μ and |un|2
∗
⇀ ν (3.18)

in the sense of measures. Moreover, in view of (2.2) and (3.12), {|un|}n∈N is a tight sequence in H1(RN , R), 
so, using the concentration compactness principle [27], we obtain an at most countable index set I, sequences 
{xi}i∈I ⊂ RN , {μi}i∈I , {νi}i∈I such that

μ ≥ |∇|u||2 +
∑
i∈I

μiδxi
, ν = |u|2∗

+
∑
i∈I

νiδxi
and S∗ν

2/2∗

i ≤ μi ∀i ∈ I. (3.19)

Thus, it is enough to prove that {xi}i∈I ∩Λε = ∅. Suppose by contradiction that there exists i ∈ I such that 
xi ∈ Λε. For any ρ > 0, we define ψρ(x) = ψ((x − xi)/ρ), where ψ ∈ C∞

c (RN , [0, 1]), ψ = 1 in B1, ψ = 0 in 
Bc

2 and |∇ψ|∞ ≤ 2. We may assume that ρ is chosen in such a way that supp(ψρ) ⊂ Λε. Since {ψρun}n∈N
is bounded in Hε and 〈J ′

ε(un), ψρun〉 = on(1), we can use (2.2) to see that
∫
RN

|∇|un||2ψρ dx ≤
∫
RN

|∇εun|2ψρ dx

≤ −�

⎛
⎝ ∫

RN

ıūn∇εun∇ψρ dx

⎞
⎠ +

∫
RN

f(|un|2)|un|2ψρ dx

+
∫
RN

ψρ|un|2
∗
dx + on(1). (3.20)

Since f has subcritical growth and ψρ has compact support, we get
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lim
ρ→0

lim
n→∞

∫
RN

f(|un|2)|un|2ψρ dx = lim
ρ→0

∫
RN

f(|u|2)|u|2ψρ dx = 0. (3.21)

Applying the Hölder inequality, and using the boundedness of {un}n∈N in Hε, the strong convergence of 
{|un|}n∈N in L2

loc(RN , R), |u| ∈ L2∗(RN , R), |∇ψρ| ≤ Cρ−1 and |B(xi, 2ρ)| ∼ ρN we have

lim sup
n→∞

∣∣∣∣∣∣
∫
RN

ıūn∇εun∇ψρ dx

∣∣∣∣∣∣ ≤ lim sup
n→∞

⎛
⎜⎝ ∫

B2ρ(xi)

|un|2|∇ψρ|2 dx

⎞
⎟⎠

1/2

|∇εun|2

≤ C

⎛
⎜⎝ ∫

B2ρ(xi)

|u|2|∇ψρ|2 dx

⎞
⎟⎠

1/2

≤ C

⎛
⎜⎝ ∫

B2ρ(xi)

|u|2∗
dx

⎞
⎟⎠

1/2∗

→ 0 as ρ → 0,

which gives

lim
ρ→0

lim sup
n→∞

∣∣∣∣∣∣
∫
RN

ıūn∇εun∇ψρ dx

∣∣∣∣∣∣ = 0. (3.22)

Then, taking into account (3.18), (3.20), (3.21) and (3.22), we can conclude that νi ≥ μi. This combined 
with the last statement in (3.19) yields that

νi ≥ S
N/2
∗ . (3.23)

Now, in the light (g3) and (f4), we obtain

c = Jε(un) − 1
2 〈J

′
ε(un), un〉 + on(1)

= 1
2

∫
RN\Λε

[g(ε x, |un|2)|un|2 −G(ε x, |un|2)] dx

+ 1
2

∫
Λε

[f(|un|2)|un|2 − F (|un|2)] dx + 1
N

∫
Λε

|un|2
∗
dx + on(1)

≥ 1
N

∫
Λε

|un|2
∗
dx + on(1)

≥ 1
N

∫
Λε

|un|2
∗
ψρ dx + on(1).

Taking the limit and using (3.19) and (3.23) we get

c ≥ 1
N

∑
{i∈I:xi∈Λε}

ψρ(xi) νi = 1
N

∑
{i∈I:xi∈Λε}

νi ≥
1
N

S
N
2∗

which does not make sense. This ends the proof of (3.16). �
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In view of Lemma 3.1, Lemma 3.2 and Lemma 3.3, we can apply the mountain pass theorem [7] to deduce 
that for all ε > 0 there exists uε ∈ Hε such that

Jε(uε) = cε and J ′
ε(uε) = 0. (3.24)

Now, we deal with the following autonomous problem, with μ > 0,
{

−Δu + μu = f(|u|2)u + |u|2∗−2u in RN ,

u ∈ H1(RN ,R), u > 0 in RN .
(3.25)

The Euler-Lagrange functional associated with (3.25) is given by

Iμ(u) = 1
2(|∇u|22 + μ|u|22) −

1
2

∫
RN

F (|u|2) dx− 1
2∗

∫
RN

(u+)2
∗
dx.

Let us denote by Xμ the Sobolev space H1(RN , R) endowed with the norm

‖u‖2
μ = |∇u|22 + μ|u|22.

The Nehari manifold associated with Iμ is given by

Nμ = {u ∈ Xμ \ {0} : 〈I ′
μ(u), u〉 = 0}.

It is standard to check that Iμ has a mountain pass geometry and we denote by cμ its mountain pass level. 
Moreover, arguing as in [32], we can show that

cμ = inf
Nμ

Iμ = inf
u∈Xμ\{0}

max
t≥0

I(tu).

As proved in [2], we know that

Theorem 3.1. For all μ > 0, problem (3.25) admits a positive ground state solution u0 ∈ Xμ. Moreover, 
cμ < 1

N S
N
2∗ .

Next, we establish a very useful relation between cε and cV0 :

Lemma 3.4. It holds lim sup
ε→0

cε ≤ cV0 .

Proof. For any ε > 0, we set uε(x) = ψε(x)u0(x)eıθ(x), where u0 is a positive ground state of (3.25) whose 
existence is guaranteed by Theorem 3.1, and ψε(x) = ψ(ε x) with ψ ∈ C∞

c (RN , R), ψ ∈ [0, 1], ψ(x) = 1 if 
|x| ≤ 1

2 and ψ(x) = 0 if |x| ≥ 1. For simplicity, we assume that supp(ψ) ⊂ B1 ⊂ Λ. Arguing as in Lemma 
3.2 in [14], we can see that

‖uε‖2
ε → ‖u0‖2

V0
as ε → 0. (3.26)

Now, for each ε > 0 there exists tε > 0 such that

Jε(tεuε) = max
t≥0

Jε(tuε).

Hence, 〈J ′
ε(tεuε), uε〉 = 0 and this implies that
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‖uε‖2
ε =

∫
RN

f(|tεuε|2)|uε|2 dx + t2
∗−2

ε

∫
RN

|uε|2
∗
dx. (3.27)

In view of (f1)-(f3), (3.26), (3.27), it is easy to see that tε → t0 > 0 as ε → 0. Then, taking the limit as 
ε → 0 in (3.27) and using (3.26) we get

‖u0‖2
V0

=
∫
RN

f(|t0u0|2)|u0|2 dx + t2
∗−2

0

∫
RN

|u0|2
∗
dx.

From u0 ∈ NV0 and assumption (f4) we deduce that t0 = 1.
Therefore,

cε ≤ max
t≥0

Jε(tuε) = Jε(tεuε)

which implies that

lim sup
ε→0

cε ≤ IV0(u0) = cV0 . �
Now, we prove the following useful lemma.

Lemma 3.5. There exist R, β, ε∗ > 0 and {yε} ⊂ RN such that
∫

BR(yε)

|uε|2dx ≥ β, ∀ ε ∈ (0, ε∗). (3.28)

Proof. Firstly, using (3.24) and (g1), (g2), we can note that there is γ > 0 (independent of ε) such that

‖uε‖ε ≥ γ > 0 ∀ ε > 0. (3.29)

Now, we show that for any sequence {εn}n∈N ⊂ (0, ∞) with εn → 0, the limit below

lim
n→∞

sup
y∈RN

∫
Br(y)

|uεn |2dx = 0

does not hold for any r > 0. Otherwise, if it holds for some r > 0, we can use Lemma 2.1 to see that 
|uεn | → 0 in Lq(RN , R) for all q ∈ (2, 2∗). In particular, by (f1) and (f2) it follows that

∫
RN

F (|uεn |2)dx =
∫
RN

f(|uεn |2)|uεn |2dx = on(1).

This implies that

1
2

∫
RN

G(εn x, |uεn |2)dx ≤ 1
2∗

∫
Λεn∪{|uεn |2≤a}

|uεn |2
∗
dx + V1

2K

∫
Λc

εn
∩{|uεn |2>a}

|uεn |2dx + on(1) (3.30)

and ∫
RN

g(εn x, |uεn |2)|uεn |2dx =
∫

Λεn∪{|uεn |2≤a}

|uεn |2
∗
dx + V1

K

∫
Λc

εn
∩{|uεn |2>a}

|uεn |2dx + on(1), (3.31)
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where we used the notation Λc
εn = RN \Λεn . Taking into account 〈J ′

εn(uεn), uεn〉 = 0 and (3.31), we deduce 
that

‖uεn‖2
εn − V1

K

∫
Λc

εn
∩{|uεn |2>a}

|uεn |2dx =
∫

Λεn∪{|uεn |2≤a}

|uεn |2
∗
dx + on(1). (3.32)

Let � ≥ 0 be such that

‖uεn‖2
εn − V1

K

∫
Λc

εn
∩{|uεn |2>a}

|uεn |2dx → �.

It is easy to see that � > 0, otherwise uεn → 0 in Hεn and this is impossible in view of (3.29). It follows 
from (3.32) that

∫
Λεn∪{|uεn |2≤a}

|uεn |2
∗
dx → �.

Using Jεn(uεn) − 1
2∗ 〈J ′

ε(uεn), uεn〉 = cεn , (3.30) and (3.31) we can see that � ≤ N lim infn→∞ cεn . Now, by 
the definition of S∗, (V1) and (2.2) we obtain that

‖uεn‖2
εn − V1

K

∫
Λc

εn
∩{|uεn |2>a}

|uεn |2dx

≥
∫
RN

|∇εnuεn |2dx + V1

(
1 − 1

K

) ∫
Λc

εn
∩{|uεn |2>a}

|uεn |2dx

≥
∫
RN

|∇|uεn ||2dx

≥ S∗

⎛
⎝ ∫

RN

|uεn |2
∗
dx

⎞
⎠

2
2∗

≥ S∗

⎛
⎜⎝ ∫

Λεn∪{|uεn |2≤a}

|uεn |2
∗
dx

⎞
⎟⎠

2
2∗

,

that is

‖uεn‖2
εn − V1

K

∫
Λc

εn
∩{|uεn |2>a}

|uεn |2dx ≥ S∗

⎛
⎜⎝ ∫

Λεn∪{|uεn |2≤a}

|uεn |2
∗
dx

⎞
⎟⎠

2
2∗

and taking the limit as n → ∞ we can infer that � ≥ S∗�
2
2∗ . Then we can deduce that

lim inf
n→∞

cεn ≥ 1
N

S
N
2∗

which contradicts Lemma 3.4. �
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We conclude this section by proving the following compactness result which will be fundamental for 
showing that the solutions of the modified problem are solutions of the original problem.

Lemma 3.6. Let εn → 0+ and {un}n∈N ⊂ Hεn be such that Jεn(un) = cεn and J ′
εn(un) = 0. Then there 

exists {ỹn}n∈N ⊂ RN such that the translated sequence

ũn(x) := |un|(x + ỹn)

has a subsequence which converges in H1(RN , R). Moreover, up to a subsequence, {yn}n∈N := {εn ỹn}n∈N
is such that yn → y0 for some y0 ∈ Λ such that V (y0) = V0.

Proof. Taking into account Jεn(un) = cεn , 〈J ′
εn(un), un〉 = 0 and Lemma 3.4, we can argue as in the proof 

of Lemma 3.3 to deduce that {un}n∈N is bounded in Hεn . Therefore, proceeding as in Lemma 3.5, we can 
find a sequence {ỹn}n∈N ⊂ RN and constants R, α > 0 such that

lim inf
n→∞

∫
BR(ỹn)

|un|2dx ≥ α.

Set ũn(x) := |un|(x + ỹn). Then, by (2.2), it follows that {ũn}n∈N is bounded in H1(RN , R), and we may 
assume that

ũn ⇀ ũ weakly in H1(RN ,R). (3.33)

Moreover, ũ �= 0 in view of
∫
BR

|ũ|2dx ≥ α. (3.34)

Now, we set yn := εn ỹn. Let us begin by proving that {yn}n∈N is bounded. To this end, it is enough to 
show the following claim:

Claim 1. limn→∞ dist(yn, Λ) = 0.

Indeed, if the claim does not hold, there exists δ > 0 and a subsequence of {yn}n∈N , still denoted by 
itself, such that

dist(yn,Λ) ≥ δ ∀n ∈ N.

Then we can find r > 0 such that Br(yn) ⊂ Λc for all n ∈ N. Since ũ ≥ 0 and C∞
c (RN , R) is dense in 

H1(RN , R) (see [1]), we can find a sequence {ψj}j∈N ⊂ C∞
c (RN , R) such that ψj ≥ 0 and ψj → ũ in 

H1(RN , R).
Now, thanks to Kato’s inequality (2.3), we can note that ũn satisfies (in weak sense)

−Δũn + V (εn x + εn ỹn)ũn ≤ g(εn x + εn ỹn, |ũn|2)ũn in RN . (3.35)

Then, fixed j ∈ N and taking ψj as test function in (3.35), we get
∫
RN

∇ũn∇ψj dx +
∫
RN

V (εn x + εn ỹn)ũnψj dx ≤
∫
RN

g(εn x + εn ỹn, |ũn|2)ũnψj dx. (3.36)
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Since ũn, ψj ≥ 0 and using (g2), Br(yn) ⊂ Λc and that g(x, t) = f̃(t) ≤ V1
K for (x, t) ∈ Λc ×R, we have

∫
RN

g(εn x + εn ỹn, |ũn|2)ũnψj dx =
∫

Br/ εn

g(εn x + εn ỹn, |ũn|2)ũnψj dx

+
∫

RN\Br/ εn

g(εn x + εn ỹn, |ũn|2)ũnψj dx

≤ V1

K

∫
Br/ εn

ũnψj dx +
∫

RN\Br/ εn

(
f(|ũn|2)ũnψj + ũ2∗−1

n ψj

)
dx

which together with (3.36) implies that
∫
RN

∇ũn∇ψj dx + μ0

∫
RN

ũnψj dx ≤
∫

RN\Br/ εn

(
f(|ũn|2)ũnψj + ũ2∗−1

n ψj

)
dx (3.37)

where μ0 = V1(1 − 1
K ). By (3.33), ψj has compact support in RN and εn → 0 we can deduce that as n → ∞

∫
RN

∇ũn∇ψj dx →
∫
RN

∇ũ∇ψj dx

and ∫
RN\Br/ εn

(
f(|ũn|2)ũnψj + ũ2∗−1

n ψj

)
dx → 0.

The above limits and (3.37) yield
∫
RN

∇ũ∇ψj dx + μ0

∫
RN

ũψj dx ≤ 0

and taking the limit as j → ∞ we obtain that

‖ũ‖2
μ0

= |∇ũ|22 + μ0|ũ|22 ≤ 0

which contradicts (3.34). Hence, there exists a subsequence of {yn}n∈N such that yn → y0 ∈ Λ.

Claim 2. y0 ∈ Λ.

Using (g2) and (3.36) we can see that
∫
RN

∇ũn∇ψj dx +
∫
RN

V (εn x + εn ỹn)ũnψj dx ≤
∫
RN

(f(|ũn|2)ũn + ũ2∗−1
n )ψj dx.

Letting n → ∞ we get
∫
RN

∇ũ∇ψj dx +
∫
RN

V (y0)ũψj dx ≤
∫
RN

(f(|ũ|2)ũ + ũ2∗−1)ψj dx,
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and passing to the limit as j → ∞ we obtain
∫
RN

|∇ũ|2 dx +
∫
RN

V (y0)|ũ|2 dx ≤
∫
RN

f(|ũ|2)|ũ|2 + |ũ|2∗
dx.

Accordingly, we can find τ ∈ (0, 1) such that τ ũ ∈ NV (y0). Hence, denoting by cV (y0) the mountain pass 
level associated with IV (y0), and using (2.2) and Lemma 3.4, we have

cV (y0) ≤ IV (y0)(τu) ≤ lim inf
n→∞

Jεn(uεn) = lim inf
n→∞

cεn ≤ cV0

from which we deduce that V (y0) ≤ V (0) = V0. Since V0 = infΛ V , we can infer that V (y0) = V0. By (V2), 
it follows that y0 /∈ ∂Λ, that is y0 ∈ Λ.

Claim 3. ũn → ũ in H1(RN , R) as n → ∞.

Put

Λ̃n = Λ − εn ỹn
εn

,

and define

χ̃1
n(x) =

{
1 if x ∈ Λ̃n,

0 if x ∈ RN \ Λ̃n,

χ̃2
n(x) = 1 − χ̃1

n(x).

Now, we introduce the following functions for all x ∈ RN

h1
n(x) =

(
1
2 − 1

ϑ

)
V (εn x + εn ỹn)|ũn(x)|2χ̃1

n(x)

h1(x) =
(

1
2 − 1

ϑ

)
V (y0)|ũ(x)|2

h2
n(x) =

[(
1
2 − 1

ϑ

)
V (εn x + εn ỹn)|ũn(x)|2 + 1

ϑ
g(εn x + εn ỹn, |ũn(x)|2)|ũn(x)|2

−1
2G(εn x + εn ỹn, |ũn(x)|2)

]
χ̃2
n(x) ≥

((
1
2 − 1

ϑ

)
− 1

K

)
V (εn x + εn ỹn)|ũn(x)|2χ̃2

n(x)

h3
n(x) =

(
1
ϑ
g(εn x + εn ỹn, |ũn(x)|2)|ũn(x)|2 − 1

2G(εn x + εn ỹn, |ũn(x)|2)
)
χ̃1
n(x)

=
[

1
ϑ

(
f(|ũn(x)|2)|ũn(x)|2 + |ũn(x)|2∗

)
−
(

1
2F (|ũn(x)|2) + 1

2∗ |ũn(x)|2∗
)]

χ̃1
n(x)

h3(x) = 1
ϑ

(
f(|ũ(x)|2)|ũ(x)|2 + |ũ(x)|2∗

)
−

(
1
2F (|ũ(x)|2) + 1

2∗ |ũ(x)|2∗
)
.

In view of (f3) and (g3), we can observe that all the above functions are nonnegative. Moreover, using (3.33)
and Claim 2, we can see that

ũn(x) → ũ(x) a.e. x ∈ RN ,

εn ỹn → y0 ∈ Λ,
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which imply that

χ̃1
n(x) → 1, h1

n(x) → h1(x), h2
n(x) → 0 and h3

n(x) → h3(x) a.e. x ∈ RN .

Thus, by Fatou’s Lemma, Lemma 3.4 and (2.2) we get

cV0 ≥ lim sup
n→∞

cεn = lim sup
n→∞

(
Jεn(un) − 1

ϑ
〈J ′

εn(un), un〉
)

≥ lim sup
n→∞

⎡
⎣(1

2 − 1
ϑ

)
|∇ũn|22 +

∫
RN

(h1
n + h2

n + h3
n) dx

⎤
⎦

≥ lim inf
n→∞

⎡
⎣(1

2 − 1
ϑ

)
|∇ũn|22 +

∫
RN

(h1
n + h2

n + h3
n) dx

⎤
⎦

≥
(

1
2 − 1

ϑ

)
|∇ũ|22 +

∫
RN

(h1 + h3) dx ≥ cV0 ,

which yields

lim
n→∞

|∇ũn|22 = |∇ũ|22 (3.38)

and

h1
n → h1, h2

n → 0 and h3
n → h3 in L1(RN ,R).

Therefore,

lim
n→∞

∫
RN

V (εn x + εn ỹn)|ũn|2 dx =
∫
RN

V (y0)|ũ|2 dx,

from which we deduce that

lim
n→∞

|ũn|22 = |ũ|22. (3.39)

Putting together (3.38) and (3.39) and using the fact that H1(RN , R) is a Hilbert space, we obtain

‖ũn − ũ‖2 = ‖ũn‖2 − ‖ũ‖2 + on(1) = on(1).

This fact ends the proof of lemma. �
4. Proof of Theorem 1.1

This last section is devoted to the proof of Theorem 1.1. Firstly, we prove the following result:

Lemma 4.1. Let εn → 0 and un ∈ Hεn be a mountain pass solution to (3.2). Then, up to a subsequence, 
vn := |un|(· +ỹn) ∈ L∞(RN , R), where {ỹn}n∈N is defined as in Lemma 3.6, and there exists C > 0 such that

|vn|∞ ≤ C for all n ∈ N.

Moreover, vn(x) → 0 as |x| → ∞ uniformly in n ∈ N.



JID:YJMAA AID:23299 /FLA Doctopic: Partial Differential Equations [m3L; v1.260; Prn:27/06/2019; 16:03] P.21 (1-23)
V. Ambrosio / J. Math. Anal. Appl. ••• (••••) •••–••• 21
Proof. The proof of this result can be obtained arguing as in Lemma 4.1 in [6]. Alternatively, we can use 
Kato’s inequality (2.3) and (V1) to see that vn satisfies

−Δvn + V1vn ≤ f(v2
n)vn + v2∗−1

n in RN .

In view of assumptions (f1) and (f2) and using a Moser iteration argument [28] (see Proposition 2.2 in [13]), 
we can prove that vn ∈ L∞(RN , R) and |vn|∞ ≤ C for all n ∈ N, for some C > 0 independent of n (we use 
the fact that {un}n∈N is bounded in Hεn). In particular, arguing as in Lemma 5 in [25] or Proposition 2.2 
in [13], we can see that vn(x) decays at zero (in exponential way) as |x| → ∞ uniformly in n ∈ N. �

Now, we are ready to give the proof of the main result of this work.

Proof of Theorem 1.1. We begin by proving that there exists ε̃0 > 0 such that for any ε ∈ (0, ̃ε0) and any 
solution uε ∈ Hε of (3.2), we have

|uε|L∞(RN\Λε) <
√
a. (4.1)

Assume by contradiction that for some subsequence {εn}n∈N such that εn → 0, we can find uεn ∈ Hεn such 
that Jεn(uεn) = cεn , J ′

εn(uεn) = 0 and

|uεn |L∞(RN\Λεn ) ≥
√
a. (4.2)

In view of Lemma 3.6, there is {ỹn}n∈N ⊂ RN such that ũn = |uεn |(· + ỹn) → ũ in H1(RN , R) and 
εn ỹn → y0 for some y0 ∈ Λ such that V (y0) = V0.

Now, if we choose r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Λ, we can see that B r
εn

( y0
εn

) ⊂ Λεn . Then, for any 
y ∈ B r

εn
(ỹn) it holds

∣∣∣∣y − y0

εn

∣∣∣∣ ≤ |y − ỹn| +
∣∣∣∣ỹn − y0

εn

∣∣∣∣ < 1
εn

(r + on(1)) < 2r
εn

for n sufficiently large.

Hence,

RN \ Λεn ⊂ RN \ B r
εn

(ỹn) (4.3)

for any n big enough. Using Lemma 4.1, we can see that

ũn(x) → 0 as |x| → ∞ (4.4)

uniformly in n ∈ N. Therefore there exists R > 0 such that

ũn(x) <
√
a for |x| ≥ R,n ∈ N.

Consequently, |uεn(x)| < √
a for any x ∈ RN \ BR(ỹn) and n ∈ N. On the other hand, (4.3) implies that 

there exists ν ∈ N such that for any n ≥ ν we have

RN \ Λεn ⊂ RN \ B r
εn

(ỹn) ⊂ RN \ BR(ỹn),

which yields |uεn(x)| < √
a for any x ∈ RN \Λεn and n ≥ ν, and this contradicts (4.2). Now, since uε ∈ Hε

satisfies (4.1), it follows from the definition of g that uε is a solution of (3.1). Since û(x) = u(x/ ε) is a 
solution to (1.1), we can conclude that (1.1) has a nontrivial solution. Finally, we study the behavior of the 
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maximum points of solutions to problem (1.1). Take εn → 0 and consider a sequence {un}n∈N ⊂ Hεn of 
solutions to (3.1) as above. Let us observe that (g1) implies that we can find γ > 0 such that

g(ε x, t2)t2 ≤ V1

K
t2 for any x ∈ RN , t ≤ γ. (4.5)

Arguing as before, we can find R > 0 such that

|un|L∞(RN\BR(ỹn)) < γ. (4.6)

Moreover, up to extract a subsequence, we may assume that

|un|L∞(BR(ỹn)) ≥ γ. (4.7)

Indeed, if (4.7) does not hold, in view of (4.6) we can see that |un|∞ < γ. Then, using 〈J ′
εn(un), un〉 = 0

and (4.5) we can infer

‖un‖2
εn =

∫
RN

g(εn x, |un|2)|un|2 dx ≤ V1

K

∫
RN

|un|2 dx

which yields ‖un‖εn = 0, and this is impossible. Hence, (4.7) is satisfied.
Taking into account (4.6) and (4.7), we can deduce that the maximum points pn ∈ RN of un belong to 

BR(ỹn). Therefore pn = ỹn + qn, for some qn ∈ BR. Consequently, ηεn = εn ỹn + εn qn is the maximum 
point of |ûn|(x) = |un|(x/ εn). Since |qn| < R for any n ∈ N and εn ỹn → y0, by the continuity of V we can 
deduce that

lim
n→∞

V (ηεn) = V (y0) = V0.

This ends the proof of Theorem 1.1. �
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