期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:277
On existence of oscillatory solutions of second order Emden-Fowler equations
Article
Ou, CH ; Wong, JSW
关键词: oscillation;    nonlinear;    second order;    ordinary differential equation;   
DOI  :  10.1016/S0022-247X(02)00617-0
来源: Elsevier
PDF
【 摘 要 】

We study the second order Emden-Fowler equation y(t) + a (x)\y\(gamma) sgn = 0, gamma > 0, where a(x) is a positive and absolutely continuous function on (0, infinity). Let phi(x) = a(x)x((gamma+3)/2), y not equal 1, and bounded away from zero. We prove the following theorem. If phi'_(x) is an element of L-1 (0, infinity) where phi'_(x) = - min(phi'(x), 0), then Eq. (E) has oscillatory solutions. In particular, this result embodies earlier results by Jasny, Kurzweil, Heidel and Hinton, Chiou, and Erbe and Muldowney. (C) 2003 Elsevier Science (USA). All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0022-247X(02)00617-0.pdf 100KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次