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Abstract
We study the second order Emden—Fowler equation
Y@ +a)ly” sgny=0, y >0, (E)

wherea(x) is a positive and absolutely continuous function©nco). Let ¢ (x) = a(x)x¥1t3/2,

v # 1, and bounded away from zero. We prove the following theotégy. (x) € L1(0, 00) where
¢’_(x) = —min(¢’(x), 0), then Eq.(E) has oscillatory solutionsin particular, this result embodies
earlier results by Jasny, Kurzweil, Heidel and Hinton, Chiou, and Erbe and Muldowney.
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1. We consider the second order Emden—Fowler differential equation
Y'(0) +a@)|y(x)| sgny=0, y >0, (1)

on (0, co), wherea(x) is a positive and absolutely continuous function(@noco). Under
these conditions, it is known that every solution of (1) can be continued to the right
throughout the entire interval0, o), see Heidel [3]. A solutiony(x) is said to be
oscillatory if it has arbitrarily large zeros, i.e., for any € (0, co) there exists a1 > xo

such thaty(x1) = 0. Otherwise, the solution(x) is said to be nonoscillatory, i.e., it has
only finite number of zeros. Equation (1) is called superlineay if 1 and is called
sublinearif O<y < 1.
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The purpose of this paper is to prove a general result for Eg. (1) on the existence of
oscillatory solutions which embodies all previous results. Moreover, the proof used is
substantively different from those of the earlier results. Degaie = a(x)xY1t3/2 and
assume thap (x) is bounded away from zero at infinity, i.e.,

¢(x)=2k>0, x=x0>0, (2)

wherexg depends on the functiap(x).

Theorem 1. Let y # 1. If ¢(x) satisfies(2) and ¢’ (x) € L1(0, 00) where ¢/ (x) =
—min(¢’(x), 0), then Eq(1) has oscillatory solutions.

As corollaries to the above theorem, we have

Corollary 1. Lety # 1. If ¢(x) satisfies(2) and, in addition,g™ (x) € L1(0, c0) where
o7 (x) =max¢(x), 0), then Eq(1) has oscillatory solutions.

Corollary 2. Lety # 1. If ¢ (x) satisfieq2) and is monotone ir on (xg, o) for somexg
as given in(2), then Eq(1) has oscillatory solutions.

As a consequence of Corollary 2, we can deduce the following results:

Theorem A (Jasny [5], Kurzweil [7]).Let y > 1. If ¢(x) is nondecreasing i, then
Eq. (1) has oscillatory solutions.

Theorem B (Heidel and Hinton [4], Chiou [1])Let0 < y < 1. If ¢ (x) is nondecreasing
in x, then Eq(1) has oscillatory solutions.

Theorem C (Erbe and Muldowney [2])Let y > 1. If ¢(x) iS nonincreasing inc and
bounded away from zero, then Ed) has oscillatory solutions.

Theorem D (Chiou [1]).Let0 < y < 1. If ¢ (x) is nonincreasing inc and bounded away
from zero, then Eq1) has oscillatory solutions.
2. In this section, we present the proof of Theorem 1 and its corollaries.

Proof of Theorem 1. Let y(x) be a solution of (1) satisfying the initial conditions
1/2

y(x0) =0,  y'(x0)=xy " "c, (3)
wherec is a constant to be chosen later. Introduce the “oscillation invariant” transformation
t =logx, w(t) = xfl/zy(x) 4)

which transforms the original equation (1) into

1'13—%w+f(t)|w|7’ sghw =0, (5)
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where dot denotes differentiation with respeeind £ (t) = a(x)x ¥ +3/2 = ¢ (x). Clearly
the transformation (4) preserves the oscillatory nature between the solutions of (1) and that
of (5). Introduce the energy function

.2 1
Glwh) =5+ 1ff)y ul ™~ g’ ©
which satisfies
dG(dw(t)) _ SO (7)
t 1+y

For the superlinear case whgn- 1, using Young's inequality on the teré«w2 in (6) gives

1o L (L —2am
317 = (7o) (3re)
<t fpprtyr=1t <}f—2/(y+1>>(y+l)/(y !
20/ + 1) Ay +1\2
y — 1 y+D/(y-1
< Flw#t g (—kz/W“)) ,
20/ + 1) Ay +1\2

so the energy functiot (w(t)) satisfies

& V+1_1' 2 [ y+1_
G(w(®) > 1+ylwl gV > 2(14_3/)|w| K,

y+1 _
|w] K,

>
2(1+y)
where

19/ (=)
_v=1 /1 12/
T4y +1p\2

From above inequality it is easy to choose suitable constanendm, such that
1
——w" <m1G(w( . 8
1+J/le m1G(w(1)) + m2 (8)
Since¢ (x) can be decomposed as

¢(x)=¢(0)+/¢3r(X)dx—/cb/_(X)dx 9)
0 0

we can easily observe by (2) agd (x) € L1(0, o0) that¢(x) is bounded below if and
only if

/qbﬂr(x)dx < 00. (10)
0
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Consider first the case when (10) is true, i.e., there exists a corstamth that
lp(x)| <K, x>0 (11)

We shall show that if andxg in (3) are chosen sufficiently large, the solutio@x) of (1) is
oscillatory. Suppose to the contrary thdt) is nonoscillatory and we may without loss of
generality assume that(x) > 0 for x > X > xo, hence by (1)y”(x) < 0 for x > Xo.

It is then obvious that’(x) cannot be oscillatory. Thus there must exi&t > Xg so
that y’(x) is of constant sign oifiX1, c0). If y'(x) < 0, theny(x) — —oo contradicting
that y(x) > 0. Hencey’(x) > 0, and we claim that li;« y'(x) = 0. Suppose that
limy 00y (x) = co > 0, theny(x) > c1x on [X3, co) for somecy > 0. Integrating (1)
from X1 to x, we observe by (1) angd > 1

X X
y' () =y'(X1) —/a(S)yV(S)ds <y'(X1) —C{/G(S)S” ds
X1 X1
X
<y'(Xp) — kc}{/s_“'(”/z_l/z) ds — —o0 (12)
X1

which is impossible; hence = 0. Using lim_ . y'(x) = 0, we first integrate (1) from
to oo to obtain

oo

V() = / a(s)y” (s) ds. (13)

X

Now we integrate (13) fronX; to x to obtain
x 00
y(x) =y(X1) +/dv / a(s)y?(s)ds. (14)
X1 v
Sincey’(x) > 0 on[X1, 00), we can estimate (14) from below as

y(x)>/dv/a(S)yy(S)ds >(x—X1)y”(x)/a(S)ds
Xl X X
2k

- X1)y? (x)x~ /2 (15)
Y

o0
> (x — X1)y” (x) f ks~ T2 g5 =
X

Forx > 2X,, we havex — X1 > x/2, so (15) yields
y(x) < K1xt?, (16)

where

1 1/(y-1
K= <%> .
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Using (1), (11) and the fact li;, » y'(x) = 0, we can estimate (13) as

8]

/ a(s)y” (s)ds

X

By (4), we note that
{ w(t) =x"Y2y(x),

o0
< K(Kl)V/s*Wst =2K(K1)"x Y2, (17)

X

ly'(0)] =

18
(1) =xM2y' (x) = 352y (x). 4o

Using (16) and (17) in (18) we conclude that
wP (1) =0()

ast — oo for j =0, 1. LetCo be the uniform bound fow(z) andw(z), i.e.,
[w(@)| < Co

for sufficiently larger, whereCo depends oy, k andK but is independent af. It is thus
easy to see from (6) that lim sup,, G (w(r)) = Mo and is finite, wheré{q is independent
of c.

Noting thatf (r) < f4(r), we insert (8) into (7) to obtain

dGw®) _ fr®)
dt 14y

Upon integration it follows from (19) that

w7 < fr @0 (maG(w(®) +m2). (19)

t t
G(w() < {G(w(to))+mz/f'+(t) dt} eX|o<m1/f'+(t)dt>
10 10

2 p p
< {% +m2 f f(0) dr} exp(ml / fr(@) dr>, (20)
to 1o

whererg = logxo. Turning back to (8), and by (10), we have the estimate
1 +1
——w" T <m1G(w(®)) + m2

1+y
c2 N . - .
<my E—i—mz/ﬂr(t)dt exp| m1/f+(t)dt +m2
I 1

0 0

=11c?+ 1o, (21)

where

mq T
11=7exp(m1/f+(t)dt>
1

0
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and
o o0
I = m1m2/ f+(t) dt eXp(m]_/ f+(t) dl‘) + ma.
to fo

Integrating (7) fromrg to T yields

T . 5
—G(w(T)) —i—/%lwl”” dt =—G(w(t)) = —%. (22)
fo

Using (21), we can estimate the left hand side of (22) from below, wifiei® chosen
sufficiently large so thaG (w (7)) < Mo + 1:
T f 00 f
—G(w(D)) + | —2—w|*7 dr > —limsupG (w(z —/—_wV+1dt
(o) + [ Tt PG (w(0) = [ = wi

1o fo
o0
>-Mo—1— (11c2+12)/ﬂ(r>dr
fo

which contradicts the right hand side of (22) if we choosndzg sufficiently large such
that

v 1
l (Hdt < =
1/f(t)t<4
fo

and

2 o0
CZ > Mo—i—l—i-lz/f;(t)dt.
fo

For the remaining case whefj” ¢/, (x) dx = oo, we note by (9) ang’_(x) € L(0, c0)
that there always existsX¥, > X1 > X such that

4po(x) = ¢(x) = ¢o(x) (23)
foranyx > X5, where

po(x) = %¢(O) + %/(ﬁﬂr(x)dx.
0

Using the same argument as in (12) we again deduce that.ligy’(x) = 0. Hence (13)
remains valid. Now integrate (13) froixi, to x to obtain

X o0 o0

o) > / dv / a($)y” (s)ds > (x — X2y (x) / a(s)ds

X2 X
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> (x — X2)y” (x) f do(x)s Y TI12 g

_ 2¢o(x)

= x — X2)yY (x)x~A1/2, 24
T XY ) (24)
Forx > 2X», it then follows from (24) that
y(x) < Ka(x)x™?, (25)
where
149 \Y¥-D
Ko(x) = ( > .
¢o(x)

On the other hand, sinag(x) > 0, we find by (25)

oo

/a(s)yy(s) ds| =

1/(y-1)
< ) 5732 g
do(x)

|y =

/¢(S)yV(S)s 372 4

1 \YVo-D
<81+ )/ 1>< ) x~Y2 (26)
$o(x)

Using (18) and the fact that lim, - ¢ (x) = oo, we can deduce from (25) and (26) that

w (1) =o0(1) (27)
asr — oo for j =0, 1. Furthermore, by (25) we also have

0] Ly _ $@) 1ty _ 4bo(x) (1+ y )“*W =

— |w(t K < -0 28

1+y‘w()‘ +y( 2(x)) 1+y \¢o(x) (8)
asx — oo. By (27) and (28) it follows from (6) that

lim G(w() =0. (29)
But on the other hand, using (7) and (8) we have

dG(w(t .

dGWW) - _ f 1y (maG (w(o) +m3). (30)

dt
An integration of (30) gives

t t
G(w()) > {G(w(ro)) —mz/ f-@) dt} exp(—mlff(t) dt)
fo fo
t t
C2 . .
> {? —m2/ f_(t)dt} exp(—mlff_(t) dt)
fo fo
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which is bounded away from zero if we choosesufficiently large for fixedsy. This
contradicts (29) and this completes the proof of Theorem 1 for the superlinear case.

For the sublinear case whenQy < 1, again lety(x) be a solution of (1) satisfying (3).
We shall prove thap(x) is oscillatory by choosingg sufficiently large and sufficiently
small. If (11) holds, we chooseandxg such that

-y _min( 1. = —Y_;2/@-» 31
c 0T (’2<1+y> (1)
and

K2/ A=y)

o
K(1+V)/(1—V>/f',dt<
2

fo

wheretg = logxg. Upon these choices we claim first that

< %fz/ =) (1), (32)

w(®) < cf (YA (33)
for anyt > 79. Assume to contrary that there exists a pejrguch that

w(ty) = cf (i)Y (34)
and

w(®) < cf (YY) (35)
for 1o <t < 1. Then by (31) and (34) we have from (6)

G(w(t) > { 5:1; |w(en) |7 — %wz(u) > %clﬂf” (). (36)

But on the other hand, for amye [1o, t1], it follows from (7) and (35)
dGw(®) _ _f+

dt Sl4y

An integration of (37) yields

1ty
1_¢ . N
lw)|" ™ < mﬁf(””/(l (). (37)

G(w(t)) < G(w(to)) + ic.lﬂf (fz/(l_”)(t) _ f2/(1—y)(t0))

21+y)
t
1=y s o p@iay)
+/1+y< > )f_(t)f dr. (38)
fo
Using (31) and (32), we have from (3) and (6)
G(w(t )) — C_Z < ic)”rlfz/(lﬂ/)(t ) (39)
V=2 S aa+ ) 0
and
/Oo 1-vy f’_ (t)f(lﬂf)/(l—y)dt < 1_7)/ fz/(l—y)(to)_ (40)
21+y) 41+ y)

fo
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Substituting both (39) and (40) into (38) gives

1Y iy 20
G(w(n) < Rl (). (41)

In particular, we have
1-v 14y 20— =y ,
G(w(n)) < v £2/=y) 4 Lty £2/A=y) 4
(w(tn)) 201 7)¢ f (n) < 811,)° f (r1)
which contradicts (36), and this proves that) < cf ()Y 1=7) for anyr > 1o.

If (11) fails, i.e., lim,_ 5 @ (x) = liMm;_. o f(t) = 00, we note by (23) there exists> 0
such that

Jo) < f() <4folt), 12T,

where fo(t) = ¢o(x), fo(t) >0 and lim_  fo(t) = co by (23). Now we choose and
to > T such that (31) holds and

o0
1 /1—-y)\ . 3
4(1+y>/(1—y>/ - di <> 42
11,2 f-dr < 8 (42)
fo

We again claim that (33) holds. Otherwise there exists a ppst that all of (34)—(36) are
true. But from (38) we have by (31), (39) and (42)

2
1=y 1w za-y 2/(1-y)
-4+ —— t) — t
TRl (f o~ f (10))

t
1+ —
+4(1+y)/(1—y)fél+)’)/(1_l/)(t)/ i(l )f(t) dt
fo

G(w() <

1+y 2
2

c -y 1, 20 -
g_ - < Y /(1 V)l— 2/(1 V)t
2+2(1+y)c (f - f (10))

1—

A+y)/(1=y) ¢(A+y)/(1=y) \ tr AV
+4 IR Yt f_(t)dt
( )/ 1+y < 2 ) @)
fo

1-v 14y 20—
<V iy p2/A-n)
21+y) ! ©

t
4y /11—
_ _ ¢ AW
+ 4Q@N/A=y) p2/A-) / (_) Iy
1+y 2

fo
71—y
< P —
8(1+y)
which contradicts (36) at the point= t;. This again proves thab(r) < cf (r)Y1=7)
for any r > tg when lim_ o () = co. Now y(x) satisfies the linear equatiatf +
a(x)|y(x)|? 1z = 0. Observe that

a@|y®)| = a2 w(o) | > 22

Ly f2/(1—V)(t)
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Sincecl™” <1, soc?~1 > 1 andz” + x~2¢ 1z = 0 is oscillatory. Therefore (x) must
be oscillatory. This completes the proof of Theorem 11

Proof of Corollary 1. We note that fox > xg > 0
k—¢(xo)<¢(X)—¢(XO)é/fﬁir(X)dx—/fP’,(x)dX- (43)
X0 X0
Let M1 = fx‘:’ ¢/, (x)dx. Itis easy to see by (2) that

/qb/_(x)dx < M1+ ¢ (x0).
xQ

We can now apply Theorem 1 to obtain the desired conclusian.

Proof of Corollary 2. Let ¢(x) be nonincreasing. The, (x) = 0, so the conclusion
follows from Corollary 1. Next consider the case whgtx) is nondecreasing, sp_(x)
= 0. The conclusion follows from Theorem 10

3. In this section, we give examples and remarks which relate our theorem to that of
earlier results.

Remark 1. Theorem 1 is clearly false when= 1 as can be seen in the case of the Euler
equationy” (x) + 1x~2y =0.

Remark 2. Takea(x) = x~**3/2{2 4 sinx/x?}. Here ¢ (x) satisfies the assumptions
of Theorem 1 or Corollary 1 sincg’(x) = {cosx/x2 — 2 sinx/x3} € L1[xg, co) for any
xo > 0. Note that for any positive integer

4
(2n + 1272’
S0 ¢ (x) is not monotone and none of Theorems A, B, C and D is applicable.

Mmﬂ=¢«n+hny=2amd¢<Qnin%)=2i

Remark 3. Consider (x) = ¢1(x) + ¢2(x), whereg (x) = x 2 sinx andg»(x) is defined
by

1y— 2nr <x<(2n+1
= [ amersansn

n+1, 2+ D <x < @n+2)m,

wheren is any positive integer. Here lim, o, ¢ (x) = 00, ¢/, (x) ¢ L1(0, 0), ¢(x) is not
monotone bu®’_(x) € L1(0, o), so the equation

Y () +x" I 2p )y sgny =0, y >0, y #1,

has oscillatory solutions.
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Remark 4. The condition thaip(x) be bounded away from zero cannot be removed.
Let 8 > 0 andy (x) = ¢ (x)x®. It is known that ify (x) is nonincreasing then Eq. (1) is
nonoscillatory, i.e., it does not have oscillatory solutions. See Kiguradze [§] fof. and
Wong [8] for O0< y < 1.

Itis also interesting to note that the main Theorem 1 complements a recent result of the
second author, namely,

Theorem E (Wong [9]). Let ¥ (x) = a(x)x¥+3/2+3 ‘wheres > 0 andy # 1. If ¢ (x) >
k >0forx >xo>0andy’ (x) € L0, 00) wherey/, (x) = max(y’(x), 0), then Eq(1)
is nonoscillatory.

Note that the assumptions gr(x) in Theorem E imply in fact thay’ (x) € L1(0, co).
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