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Abstract

We study the second order Emden–Fowler equation

y′′(t)+ a(x)|y|γ sgny = 0, γ > 0, (E)

wherea(x) is a positive and absolutely continuous function on(0,∞). Let φ(x) = a(x)x(γ+3)/2,
γ �= 1, and bounded away from zero. We prove the following theorem.If φ′−(x) ∈ L1(0,∞) where
φ′−(x) = −min(φ′(x),0), then Eq.(E) has oscillatory solutions. In particular, this result embodies
earlier results by Jasny, Kurzweil, Heidel and Hinton, Chiou, and Erbe and Muldowney.
 2003 Elsevier Science (USA). All rights reserved.
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1. We consider the second order Emden–Fowler differential equation

y ′′(t)+ a(x)
∣∣y(x)∣∣γ sgny = 0, γ > 0, (1)

on (0,∞), wherea(x) is a positive and absolutely continuous function on(0,∞). Under
these conditions, it is known that every solution of (1) can be continued to the right
throughout the entire interval(0,∞), see Heidel [3]. A solutiony(x) is said to be
oscillatory if it has arbitrarily large zeros, i.e., for anyx0 ∈ (0,∞) there exists ax1 > x0
such thaty(x1) = 0. Otherwise, the solutiony(x) is said to be nonoscillatory, i.e., it has
only finite number of zeros. Equation (1) is called superlinear ifγ > 1 and is called
sublinear if 0< γ < 1.
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The purpose of this paper is to prove a general result for Eq. (1) on the existence of
oscillatory solutions which embodies all previous results. Moreover, the proof used is
substantively different from those of the earlier results. Denoteφ(x) = a(x)x(γ+3)/2 and
assume thatφ(x) is bounded away from zero at infinity, i.e.,

φ(x)� k > 0, x � x0 > 0, (2)

wherex0 depends on the functionφ(x).

Theorem 1. Let γ �= 1. If φ(x) satisfies(2) and φ′−(x) ∈ L1(0,∞) where φ′−(x) =
−min(φ′(x),0), then Eq.(1) has oscillatory solutions.

As corollaries to the above theorem, we have

Corollary 1. Let γ �= 1. If φ(x) satisfies(2) and, in addition,φ+(x) ∈ L1(0,∞) where
φ+(x)= max(φ(x),0), then Eq.(1) has oscillatory solutions.

Corollary 2. Let γ �= 1. If φ(x) satisfies(2) and is monotone inx on (x0,∞) for somex0
as given in(2), then Eq.(1) has oscillatory solutions.

As a consequence of Corollary 2, we can deduce the following results:

Theorem A (Jasny [5], Kurzweil [7]).Let γ > 1. If φ(x) is nondecreasing inx, then
Eq. (1) has oscillatory solutions.

Theorem B (Heidel and Hinton [4], Chiou [1]).Let 0< γ < 1. If φ(x) is nondecreasing
in x, then Eq.(1) has oscillatory solutions.

Theorem C (Erbe and Muldowney [2]).Let γ > 1. If φ(x) is nonincreasing inx and
bounded away from zero, then Eq.(1) has oscillatory solutions.

Theorem D (Chiou [1]).Let 0< γ < 1. If φ(x) is nonincreasing inx and bounded away
from zero, then Eq.(1) has oscillatory solutions.

2. In this section, we present the proof of Theorem 1 and its corollaries.

Proof of Theorem 1. Let y(x) be a solution of (1) satisfying the initial conditions

y(x0)= 0, y ′(x0)= x
−1/2
0 c, (3)

wherec is a constant to be chosen later. Introduce the “oscillation invariant” transformation

t = logx, w(t) = x−1/2y(x) (4)

which transforms the original equation (1) into

ẅ − 1

4
w + f (t)|w|γ sgnw = 0, (5)
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where dot denotes differentiation with respectt andf (t) = a(x)x(γ+3)/2 = φ(x). Clearly
the transformation (4) preserves the oscillatory nature between the solutions of (1) and that
of (5). Introduce the energy function

G
(
w(t)

)= ẇ2

2
+ f (t)

1+ γ
|w|γ+1 − 1

8
w2 (6)

which satisfies

dG(w(t))

dt
= ḟ (t)

1+ γ
|w|γ+1. (7)

For the superlinear case whenγ > 1, using Young’s inequality on the term18w
2 in (6) gives

1

8
w2 = 1

4

(
f 2/(γ+1))(1

2
f−2/(1+γ )

)

� 1

2(γ + 1)
f |w|γ+1 + γ − 1

4(γ + 1)

(
1

2
f−2/(γ+1)

)(γ+1)/(γ−1)

� 1

2(γ + 1)
f |w|γ+1 + γ − 1

4(γ + 1)

(
1

2
k−2/(γ+1)

)(γ+1)/(γ−1)

,

so the energy functionG(w(t)) satisfies

G
(
w(t)

)
� f (t)

1+ γ
|w|γ+1 − 1

8
w2 � f (t)

2(1+ γ )
|w|γ+1 −Kγ

� k

2(1+ γ )
|w|γ+1 −Kγ

where

Kγ = γ − 1

4(γ + 1)

(
1

2

)(1+γ )/(γ−1)

k2/(1−γ ).

From above inequality it is easy to choose suitable constantsm1 andm2 such that

1

1+ γ
|w|γ+1 �m1G

(
w(t)

)+m2. (8)

Sinceφ(x) can be decomposed as

φ(x)= φ(0)+
x∫

0

φ′+(x) dx −
x∫

0

φ′−(x) dx (9)

we can easily observe by (2) andφ′−(x) ∈ L1(0,∞) that φ(x) is bounded below if and
only if

∞∫
0

φ′+(x) dx <∞. (10)
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Consider first the case when (10) is true, i.e., there exists a constantK such that∣∣φ(x)∣∣� K, x > 0. (11)

We shall show that ifc andx0 in (3) are chosen sufficiently large, the solutiony(x) of (1) is
oscillatory. Suppose to the contrary thaty(x) is nonoscillatory and we may without loss of
generality assume thaty(x) > 0 for x > X0 � x0, hence by (1)y ′′(x) < 0 for x > X0.
It is then obvious thaty ′(x) cannot be oscillatory. Thus there must existX1 > X0 so
that y ′(x) is of constant sign on[X1,∞). If y ′(x) < 0, theny(x) → −∞ contradicting
that y(x) > 0. Hencey ′(x) > 0, and we claim that limt→∞ y ′(x) = 0. Suppose that
limx→∞ y ′(x) = c0 > 0, theny(x) > c1x on [X1,∞) for somec1 > 0. Integrating (1)
fromX1 to x, we observe by (1) andγ > 1

y ′(x)= y ′(X1)−
x∫

X1

a(s)yγ (s) ds � y ′(X1)− c
γ

1

x∫
X1

a(s)sγ ds

� y ′(X1)− kc
γ

1

x∫
X1

s−1+(γ /2−1/2) ds → −∞ (12)

which is impossible; hencec0 = 0. Using limt→∞ y ′(x) = 0, we first integrate (1) fromx
to ∞ to obtain

y ′(x)=
∞∫
x

a(s)yγ (s) ds. (13)

Now we integrate (13) fromX1 to x to obtain

y(x)= y(X1)+
x∫

X1

dv

∞∫
v

a(s)yγ (s) ds. (14)

Sincey ′(x) > 0 on[X1,∞), we can estimate (14) from below as

y(x)�
x∫

X1

dv

∞∫
x

a(s)yγ (s) ds � (x −X1)y
γ (x)

∞∫
x

a(s) ds

� (x −X1)y
γ (x)

∞∫
x

ks−(γ+3)/2ds = 2k

γ + 1
(x −X1)y

γ (x)x−(1+γ )/2. (15)

Forx � 2X1, we havex −X1 � x/2, so (15) yields

y(x)� K1x
1/2, (16)

where

K1 =
(

1+ γ

k

)1/(γ−1)

.
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Using (1), (11) and the fact limx→∞ y ′(x)= 0, we can estimate (13) as

∣∣y ′(x)
∣∣=

∣∣∣∣∣
∞∫
x

a(s)yγ (s) ds

∣∣∣∣∣� K(K1)
γ

∞∫
x

s−3/2ds = 2K(K1)
γ x−1/2. (17)

By (4), we note that{
w(t) = x−1/2y(x),

ẇ(t)= x1/2y ′(x)− 1
2x

−1/2y(x).
(18)

Using (16) and (17) in (18) we conclude that

w(j)(t) =O(1)

ast → ∞ for j = 0,1. LetC0 be the uniform bound forw(t) andẇ(t), i.e.,∣∣w(j)(t)
∣∣� C0

for sufficiently larget , whereC0 depends onγ , k andK but is independent ofc. It is thus
easy to see from (6) that lim supt→∞G(w(t)) =M0 and is finite, whereM0 is independent
of c.

Noting thatḟ (t)� ḟ+(t), we insert (8) into (7) to obtain

dG(w(t))

dt
� ḟ+(t)

1+ γ

∣∣w(t)
∣∣1+γ � ḟ+(t)

(
m1G

(
w(t)

)+m2
)
. (19)

Upon integration it follows from (19) that

G
(
w(t)

)
�
{
G
(
w(t0)

)+m2

t∫
t0

ḟ+(t) dt
}

exp

(
m1

t∫
t0

ḟ+(t) dt
)

�
{
c2

2
+m2

t∫
t0

ḟ+(t) dt
}

exp

(
m1

t∫
t0

ḟ+(t) dt
)
, (20)

wheret0 = logx0. Turning back to (8), and by (10), we have the estimate

1

1+ γ
|w|γ+1 �m1G

(
w(t)

)+m2

�m1

{
c2

2
+m2

∞∫
t0

ḟ+(t) dt
}

exp

(
m1

∞∫
t0

ḟ+(t) dt
)

+m2

= l1c
2 + l2, (21)

where

l1 = m1

2
exp

(
m1

∞∫
t0

ḟ+(t) dt
)
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and

l2 =m1m2

∞∫
t0

ḟ+(t) dt exp

(
m1

∞∫
t0

ḟ+(t) dt
)

+m2.

Integrating (7) fromt0 to T yields

−G
(
w(T )

)+
T∫

t0

ḟ

1+ γ
|w|1+γ dt = −G

(
w(t0)

)= −c2

2
. (22)

Using (21), we can estimate the left hand side of (22) from below, whereT is chosen
sufficiently large so thatG(w(T ))� M0 + 1:

−G
(
w(T )

)+
T∫

t0

ḟ

1+ γ
|w|1+γ dt � − limsupG

(
w(t)

)−
∞∫
t0

ḟ−
1+ γ

|w|γ+1dt

� −M0 − 1− (l1c
2 + l2)

∞∫
t0

ḟ−(t) dt

which contradicts the right hand side of (22) if we choosec andt0 sufficiently large such
that

l1

∞∫
t0

ḟ−(t) dt <
1

4

and

c2

4
>M0 + 1+ l2

∞∫
t0

ḟ−(t) dt.

For the remaining case when
∫∞

0 φ′+(x) dx = ∞, we note by (9) andφ′−(x) ∈ L1(0,∞)

that there always exists aX2 >X1 � X0 such that

4φ0(x)� φ(x)� φ0(x) (23)

for anyx > X2, where

φ0(x)= 1

2
φ(0)+ 1

2

x∫
0

φ′+(x) dx.

Using the same argument as in (12) we again deduce that limx→∞ y ′(x) = 0. Hence (13)
remains valid. Now integrate (13) fromX2 to x to obtain

y(x)�
x∫

X2

dv

∞∫
x

a(s)yγ (s) ds � (x −X2)y
γ (x)

∞∫
x

a(s) ds
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� (x −X2)y
γ (x)

∞∫
x

φ0(x)s
−(γ+3)/2ds

= 2φ0(x)

γ + 1
(x −X2)y

γ (x)x−(1+γ )/2. (24)

Forx � 2X2, it then follows from (24) that

y(x)� K2(x)x
1/2, (25)

where

K2(x)=
(

1+ γ

φ0(x)

)1/(γ−1)

.

On the other hand, sinceφ′
0(x)� 0, we find by (25)

∣∣y ′(x)
∣∣=

∣∣∣∣∣
∞∫
x

a(s)yγ (s) ds

∣∣∣∣∣=
∣∣∣∣∣

∞∫
x

φ(s)yγ (s)s−(γ+3)/2ds

∣∣∣∣∣
�
∣∣∣∣∣

∞∫
x

4φ0(s)

(
1+ γ

φ0(x)

)1/(γ−1)

s−3/2ds

∣∣∣∣∣
� 8(1+ γ )γ/(γ−1)

(
1

φ0(x)

)1/(γ−1)

x−1/2. (26)

Using (18) and the fact that limx→∞ φ(x)= ∞, we can deduce from (25) and (26) that

w(j)(t) = o(1) (27)

ast → ∞ for j = 0,1. Furthermore, by (25) we also have

f (t)

1+ γ

∣∣w(t)
∣∣1+γ = φ(x)

1+ γ

(
K2(x)

)1+γ � 4φ0(x)

1+ γ

(
1+ γ

φ0(x)

)(1+γ )/(γ−1)

→ 0 (28)

asx → ∞. By (27) and (28) it follows from (6) that

lim
t→∞G

(
w(t)

)= 0. (29)

But on the other hand, using (7) and (8) we have

dG(w(t))

dt
� −ḟ−(t)

(
m1G

(
w(t)

)+m2
)
. (30)

An integration of (30) gives

G
(
w(t)

)
�
{
G
(
w(t0)

)−m2

t∫
t0

ḟ−(t) dt
}

exp

(
−m1

t∫
t0

ḟ−(t) dt
)

�
{
c2

2
−m2

t∫
t0

ḟ−(t) dt
}

exp

(
−m1

t∫
t0

ḟ−(t) dt
)
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which is bounded away from zero if we choosec sufficiently large for fixedt0. This
contradicts (29) and this completes the proof of Theorem 1 for the superlinear case.

For the sublinear case when 0< γ < 1, again lety(x) be a solution of (1) satisfying (3).
We shall prove thaty(x) is oscillatory by choosingx0 sufficiently large andc sufficiently
small. If (11) holds, we choosec andx0 such that

c1−γ < min

(
1,

1− γ

2(1+ γ )
k2/(1−γ )

)
(31)

and

K(1+γ )/(1−γ )

∞∫
t0

ḟ− dt � k2/(1−γ )

2
� 1

2
f 2/(1−γ )(t0), (32)

wheret0 = logx0. Upon these choices we claim first that

w(t) < cf (t)1/(1−γ ) (33)

for any t � t0. Assume to contrary that there exists a pointt1 such that

w(t1) = cf (t1)
1/(1−γ ) (34)

and

w(t) < cf (t)1/(1−γ ) (35)

for t0 � t < t1. Then by (31) and (34) we have from (6)

G
(
w(t1)

)
� f (t1)

1+ γ

∣∣w(t1)
∣∣1+γ − 1

8
w2(t1) >

7− γ

8(1+ γ )
c1+γ f 2/(1−γ )(t1). (36)

But on the other hand, for anyt ∈ [t0, t1], it follows from (7) and (35)

dG(w(t))

dt
� ḟ+

1+ γ

∣∣w(t)
∣∣γ+1 � c1+γ

1+ γ
ḟ+f (1+γ )/(1−γ )(t). (37)

An integration of (37) yields

G
(
w(t)

)
�G

(
w(t0)

)+ 1− γ

2(1+ γ )
c1+γ

(
f 2/(1−γ )(t)− f 2/(1−γ )(t0)

)

+
t∫

t0

c1+γ

1+ γ

(
1− γ

2

)
ḟ−(t)f (1+γ )/(1−γ ) dt. (38)

Using (31) and (32), we have from (3) and (6)

G
(
w(t0)

)= c2

2
� 1− γ

4(1+ γ )
cγ+1f 2/(1−γ )(t0) (39)

and
∞∫
t0

1− γ

2(1+ γ )
ḟ−(t)f (1+γ )/(1−γ ) dt � 1− γ

4(1+ γ )
f 2/(1−γ )(t0). (40)
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Substituting both (39) and (40) into (38) gives

G
(
w(t)

)
� 1− γ

2(1+ γ )
c1+γ f 2/(1−γ )(t). (41)

In particular, we have

G
(
w(t1)

)
� 1− γ

2(1+ γ )
c1+γ f 2/(1−γ )(t1) <

7− γ

8(1+ γ )
c1+γ f 2/(1−γ )(t1)

which contradicts (36), and this proves thatw(t) < cf (t)1/(1−γ ) for anyt � t0.
If (11) fails, i.e., limx→∞ φ(x)= limt→∞ f (t) = ∞, we note by (23) there existsT > 0

such that

f0(t) � f (t)� 4f0(t), t � T ,

wheref0(t) = φ0(x), ḟ0(t) � 0 and limt→∞ f0(t) = ∞ by (23). Now we choosec and
t0 � T such that (31) holds and

4(1+γ )/(1−γ )

∞∫
t0

1

1+ γ

(
1− γ

2

)
ḟ−(t) dt <

3

8
. (42)

We again claim that (33) holds. Otherwise there exists a pointt1 so that all of (34)–(36) are
true. But from (38) we have by (31), (39) and (42)

G
(
w(t)

)
� c2

2
+ 1− γ

2(1+ γ )
c1+γ

(
f 2/(1−γ )(t)− f 2/(1−γ )(t0)

)

+ 4(1+γ )/(1−γ )f
(1+γ )/(1−γ )

0 (t)

t∫
t0

c1+γ

1+ γ

(
1− γ

2

)
ḟ−(t) dt

� c2

2
+ 1− γ

2(1+ γ )
c1+γ

(
f 2/(1−γ )(t)− f 2/(1−γ )(t0)

)

+ 4(1+γ )/(1−γ )f (1+γ )/(1−γ )(t)

t∫
t0

c1+γ

1+ γ

(
1− γ

2

)
ḟ−(t) dt

� 1− γ

2(1+ γ )
c1+γ f 2/(1−γ )(t)

+ 4(1+γ )/(1−γ )f 2/(1−γ )

t∫
t0

c1+γ

1+ γ

(
1− γ

2

)
ḟ−(t) dt

<
7− γ

8(1+ γ )
c1+γ f 2/(1−γ )(t)

which contradicts (36) at the pointt = t1. This again proves thatw(t) < cf (t)1/(1−γ )

for any t � t0 when limt→∞ f (t) = ∞. Now y(x) satisfies the linear equationz′′ +
a(x)|y(x)|γ−1z = 0. Observe that

a(x)
∣∣y(x)∣∣γ−1 = a(x)x(γ−1)/2

∣∣w(t)
∣∣γ−1

> x−2cγ−1.
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Sincec1−γ < 1, socγ−1 > 1 andz′′ + x−2cγ−1z = 0 is oscillatory. Thereforey(x) must
be oscillatory. This completes the proof of Theorem 1.✷
Proof of Corollary 1. We note that forx � x0 > 0

k − φ(x0)� φ(x)− φ(x0)�
x∫

x0

φ′+(x) dx −
x∫

x0

φ′−(x) dx. (43)

Let M1 = ∫∞
x0

φ′+(x) dx. It is easy to see by (2) that

∞∫
x0

φ′−(x) dx � M1 + φ(x0).

We can now apply Theorem 1 to obtain the desired conclusion.✷
Proof of Corollary 2. Let φ(x) be nonincreasing. Thenφ′+(x) ≡ 0, so the conclusion
follows from Corollary 1. Next consider the case whenφ(x) is nondecreasing, soφ′−(x)
≡ 0. The conclusion follows from Theorem 1.✷

3. In this section, we give examples and remarks which relate our theorem to that of
earlier results.

Remark 1. Theorem 1 is clearly false whenγ = 1 as can be seen in the case of the Euler
equationy ′′(x)+ 1

4x
−2y = 0.

Remark 2. Take a(x) = x−(γ+3)/2{2 + sinx/x2}. Hereφ(x) satisfies the assumptions
of Theorem 1 or Corollary 1 sinceφ′(x) = {cosx/x2 − 2 sinx/x3} ∈ L1[x0,∞) for any
x0 > 0. Note that for any positive integern

φ(nπ) = φ
(
(n+ 1)π

)= 2 and φ

(
(2n± 1)

π

2

)
= 2± 4

(2n+ 1)2π2
,

soφ(x) is not monotone and none of Theorems A, B, C and D is applicable.

Remark 3. Considerφ(x)= φ1(x)+φ2(x), whereφ1(x)= x−2 sinx andφ2(x) is defined
by

φ2(x)=
{

1
π
x − n, 2nπ � x � (2n+ 1)π,

n+ 1, 2(n+ 1)π � x � (2n+ 2)π,

wheren is any positive integer. Here limx→∞ φ(x) = ∞, φ′+(x) /∈ L1(0,∞), φ(x) is not
monotone butφ′−(x) ∈L1(0,∞), so the equation

y ′′(x)+ x−(γ+3)/2φ(x)|y|γ sgny = 0, γ > 0, γ �= 1,

has oscillatory solutions.
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Remark 4. The condition thatφ(x) be bounded away from zero cannot be removed.
Let δ > 0 andψ(x) = φ(x)xδ. It is known that ifψ(x) is nonincreasing then Eq. (1) is
nonoscillatory, i.e., it does not have oscillatory solutions. See Kiguradze [6] forγ > 1 and
Wong [8] for 0< γ < 1.

It is also interesting to note that the main Theorem 1 complements a recent result of the
second author, namely,

Theorem E (Wong [9]).Letψ(x) = a(x)x(γ+3)/2+δ, whereδ > 0 andγ �= 1. If ψ(x) �
k > 0 for x � x0 > 0 andψ ′+(x) ∈ L1(0,∞) whereψ ′+(x)= max(ψ ′(x),0), then Eq.(1)
is nonoscillatory.

Note that the assumptions onψ(x) in Theorem E imply in fact thatψ ′(x) ∈L1(0,∞).
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