期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:326
Well-posedness for the Cauchy problem associated to the Hirota-Satsuma equation: Periodic case
Article
Panthee, Mahendra ; Silva, Jorge Drumond
关键词: KdV equation;    Cauchy problem;    well-posedness;   
DOI  :  10.1016/j.jmaa.2006.03.010
来源: Elsevier
PDF
【 摘 要 】

We consider a system of Korteweg-de Vries (KdV) equations coupled through nonlinear terms, called the Hirota-Satsuma system. We study the initial value problem (IVP) associated to this system in the periodic case, for given data in Sobolev spaces H-s x Hs+l with regularity below the one given by the conservation laws. Using the Fourier transform restriction norm method, we prove local well-posedness whenever s > -1/2. Also, with some restriction on the parameters of the system, we use the recent technique introduced by Colliander et al., called I-method and almost conserved quantities, to prove global well-posedness for s > -3/14. (c) 2006 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2006_03_010.pdf 218KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次