期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:247
Well-posedness and weak rotation limit for the Ostrovsky equation
Article
Tsugawa, Kotaro
关键词: Ostrovsky equation;    KdV equation;    Well-posedness;    Cauchy problem;    Fourier restriction norm;    Low regularity;    Weak rotation limit;   
DOI  :  10.1016/j.jde.2009.09.009
来源: Elsevier
PDF
【 摘 要 】

We consider the Cauchy problem of the Ostrovsky equation. We first prove the time local well-posedness in the anisotropic Sobolev space H(s,a) with s > -a/2 - 3/4 and 0 <= a <= -1 by the Fourier restriction norm method. This result include the time local well-posedness in H(s) with s > -3/4 for both positive and negative dissipation. namely for both beta gamma > 0 and beta gamma < 0. We next consider the weak rotation limit. We prove that the solution of the Ostrovsky equation converges to the solution of the KdV equation when the rotation parameter gamma goes to 0 and the initial data of the KdV equation is in L(2). To show this result, we prove a bilinear estimate which is uniform with respect to gamma. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2009_09_009.pdf 236KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次