期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:417
On the well-posedness of higher order viscous Burgers' equations
Article
Carvajal, Xavier1  Panthee, Mahendra2 
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941972 Rio de Janeiro, RJ, Brazil
[2] Univ Estadual Campinas, IMECC, BR-13083859 Campinas, SP, Brazil
关键词: Initial value problem;    Well-posedness;    KdV equation;    Dispersive-dissipative models;   
DOI  :  10.1016/j.jmaa.2014.02.056
来源: Elsevier
PDF
【 摘 要 】

We consider higher order viscous Burgers' equations with generalized nonlinearity and study the associated initial value problems for given data in the L-2-based Sobolev spaces. We introduce appropriate time weighted spaces to derive multilinear estimates and use them in the contraction mapping principle argument to prove local well-posedness for data with Sobolev regularity below L-2. We also prove ill-posedness for this type of models and show that the local well-posedness results are sharp in some particular cases viz., when the orders of dissipation p, and nonlinearity k + 1, satisfy a relation p = 2k + 1. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_02_056.pdf 409KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次