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We consider higher order viscous Burgers’ equations with generalized nonlinearity
and study the associated initial value problems for given data in the L2-based
Sobolev spaces. We introduce appropriate time weighted spaces to derive multilinear
estimates and use them in the contraction mapping principle argument to prove
local well-posedness for data with Sobolev regularity below L2. We also prove ill-
posedness for this type of models and show that the local well-posedness results are
sharp in some particular cases viz., when the orders of dissipation p, and nonlinearity
k + 1, satisfy a relation p = 2k + 1.
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1. Introduction

In continuation to our recent works [5,6], here we consider higher order viscous Burgers’ equations with
generalized nonlinearity which are also known as generalized Korteweg–de Vries (KdV) type equations with
dissipative perturbation. These sort of models are well studied in the recent literature, see for example [7,14,
19,21] and references therein. The authors in [14,21] considered generalization in the dissipative part, while
the authors in [7,19] studied generalization in the nonlinearity. In this work, we are interested in considering
generalization in both dissipative as well as nonlinear parts and address the well-posedness issues for the
initial value problems (IVPs),

{
vt + vxxx + ηLv + (vk+1)x = 0, x ∈ R, t � 0, k ∈ N, k > 1,
v(x, 0) = v0(x),

(1.1)
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and {
ut + uxxx + ηLu + (ux)k+1 = 0, x ∈ R, t � 0, k ∈ N, k > 1,
u(x, 0) = u0(x),

(1.2)

where η > 0 is a constant; u = u(x, t), v = v(x, t) are real-valued functions and the linear operator L is
defined via the Fourier transform by L̂f(ξ) = −Φ(ξ)f̂(ξ).

The Fourier symbol Φ(ξ) is of the form

Φ(ξ) = −|ξ|p + Φ1(ξ), (1.3)

where p ∈ R+ and |Φ1(ξ)| � C(1 + |ξ|q) with 0 � q < p. The symbol Φ(ξ) is a real-valued function which
is bounded above; i.e., there is a constant C such that Φ(ξ) < C (see Lemma 2.2 below). We note that,
a particular case of Φ(ξ) in the form

Φ̃(ξ) =
n∑

j=0

2m∑
i=0

ci,jξ
i|ξ|j , ci,j ∈ R, c2m,n = −1, (1.4)

with p := 2m + n, has been considered in our earlier work [4].
We observe that, if u is a solution of (1.2) then v = ux is a solution of (1.1) with initial data v0 = (u0)x.

For this reason Eq. (1.1) is called the derivative equation of (1.2).
As mentioned above, we are interested in studying the well-posedness issues to the IVPs (1.1) and (1.2)

for given data in the low regularity Sobolev spaces Hs(R). Recall that, for s ∈ R, the L2-based Sobolev
spaces Hs(R) are defined by

Hs(R) :=
{
f ∈ S ′(R): ‖f‖Hs < ∞

}
,

where

‖f‖Hs :=
∥∥〈ξ〉sf̂ ∥∥

L2
ξ
,

with 〈·〉 = 1 + | · |, and f̂(ξ) is the usual Fourier transform given by

f̂(ξ) ≡ F(f)(ξ) := 1√
2π

∫
R

e−ixξf(x) dx.

The factor 1√
2π in the definition of the Fourier transform does not alter our analysis, so we will omit it.

We use the standard notion of well-posedness. More precisely, we say that an IVP for given data in
a Banach space X is locally well-posed, if there exist a certain time interval [0, T ] and a unique solution
depending continuously upon the initial data, and the solution satisfies the persistence property; i.e., the
solution describes a continuous curve in X in the time interval [0, T ]. If the above properties are true for
any time interval, we say that the IVP is globally well-posed, and if any one of the above properties fails to
hold, we say that the IVP is ill-posed.

In our recent work [5], we considered dissipative perturbation of KdV type equations (i.e., (1.1) and (1.2)
with k = 1) and proved sharp local well-posedness results for given data with Sobolev regularity below L2.
The IVPs (1.1) and (1.2) with general nonlinearity k > 0 are considered in [6] to obtain local well-posedness
in Hs, s � −1 and s � 0 respectively.

The sharp local well-posedness results in [5] were obtained by using the contraction mapping principle in
suitably defined time weighted function spaces. The motivation behind the introduction of time weighted
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function spaces is the work of Dix in [12], where the author proved sharp local well-posedness for Burgers’
equation in Hs, s > −1

2 by showing that uniqueness fails whenever s < −1
2 . We could not handle the higher

order nonlinearity in the time weighted function spaces introduced in [5]. In this work, we suitably modify
the spaces introduced in [5] to deal higher order nonlinearity. More precisely, for s ∈ R, p � 2k + 1 and
t ∈ [0, T ] with 0 < T � 1, we define δk := k−1

2(k+1) , αk := δk+|s|
p , βk := δk+|s|+1

p , and introduce two Banach
spaces Xs

T and Y s
T as follows

Xs
T :=

{
f ∈ C

(
[0, T ];Hs(R)

)
: ‖f‖Xs

T
< ∞

}
, (1.5)

Y s
T :=

{
f ∈ C

(
[0, T ];Hs(R)

)
: ‖f‖Y s

T
< ∞

}
, (1.6)

where

‖f‖Xs
T

:= sup
t∈[0,T ]

{∥∥f(t)
∥∥
Hs + tαk

∥∥f̂(t)
∥∥
L

k+1
k

ξ

}
, (1.7)

and

‖f‖Y s
T

:= sup
t∈[0,T ]

{∥∥f(t)
∥∥
Hs + tβk

∥∥∂̂xf(t)
∥∥
L

k+1
k

ξ

}
. (1.8)

Our plan is to derive some multilinear estimates in the spaces Xs
T and Y s

T and use them to apply the
contraction mapping argument so as to prove the local well-posedness results for the IVPs (1.1) and (1.2)
respectively.

In sequel, we state the main results of this work. The first result deals with the local well-posedness for
the IVP (1.1).

Theorem 1.1. Let η > 0 be fixed, k > 1 and Φ(ξ) be as given by (1.3) with p � 2k + 1 as the order of the
leading term, then for any data v0 ∈ Hs(R) there exist a time T = T (‖v0‖Hs , η) and a unique solution v

to the IVP (1.1) in C([0, T ], Hs(R)), whenever s > 1
2 − p+1

k+1 . Moreover, the map v0 	→ v(t) is smooth from
Hs(R) to C([0, T ];Hs(R)) ∩Xs

T .

The second result deals the same for the IVP (1.2).

Theorem 1.2. Let η > 0 be fixed, k > 1 and Φ(ξ) be as given by (1.3) with p � 2k + 1 as the order of the
leading term, then for any data u0 ∈ Hs(R), there exist a time T = T (‖u0‖Hs , η) and a unique solution u

to the IVP (1.2) in C([0, T ], Hs(R)), whenever s > 3
2 − p+1

k+1 . Moreover, the map u0 	→ u(t) is smooth from
Hs(R) to C([0, T ];Hs(R)) ∩ Y s

T .

The method of proof of these theorems is very simple, and does not depend on the dispersive term.
This method can be applied to address the model obtained from (1.1) by replacing vxxx by more general
dispersive term L1v, where L̂1v = iσ(ξ)v̂(ξ) with σ real. However, if the order of dissipation is lower than
that of dispersion (p < 2k + 1), then there is a role of dispersive part and this method does not work. In
this situation, Bourgain’s approach [2] can be applied to get better well-posedness results, see for example
[18] and [21] and references therein. When p = 2k + 1, there is a balance between dispersive and dissipative
effects and local well-posedness result holds up to scaling critical regularity sc = −3

2 , see below. We observe
that, in the proof of ill-posedness result, presence of dispersive term vxxx is relevant, as can be seen in proofs
of Theorems 1.3 and 1.4. The same analysis is true in the case of the IVP (1.2) as well.

We note that, the above results improve the ones obtained in [6] where the IVPs (1.1) and (1.2) are
respectively proved to be locally well-posed in Hs for s > −1 and s > 0. However, as can be seen in the
proofs of Propositions 2.11 and 2.12 (see below), the method we developed here only holds for s � 0. On
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Table 1
Well-posedness results for the gKdV.

k Scaling Well-posedness result
1 −3/2 s � −3/4
2 −1/2 s � 1/4
3 −1/6 s � −1/6
� 4 1/2 − 2/k s � 1/2 − 2/k

the other hand, the order of dissipation considered in [6] (p � 3
2k+1) is lower than the one considered here.

Therefore, in some sense, the main well-posedness results of this article and [6] complement each other.
At this point, it is natural to ask whether the local well-posedness results given by Theorems 1.1 and 1.2

are optimal in the sense that if one lowers the Sobolev regularity of the given data below the one given
by these theorems, the IVPs (1.1) and (1.2) are ill-posed. In recent literature [3,9,20,22], these sort of
questions are addressed by proving that the application data-solution is not smooth in certain range of
Sobolev regularity s. This notion of ill-posedness makes sense because if one proves local well-posedness by
using the contraction mapping principle, the application data-solution is always smooth.

To have more insight about the well-posedness and the ill-posedness issues, we make an analysis by
using scaling argument. Talking heuristically, semilinear evolution equations like viscous Burgers, Korteweg–
de Vries (KdV), nonlinear Schrödinger (NLS) and wave equations are usually expected to be well-posed for
given data with Sobolev regularity up to scaling and ill-posed below scaling. However, this is not always
true, as can be seen in the generalized KdV (gKdV) case. For η = 0, the IVP (1.1) turns out to be the
gKdV equation {

vt + vxxx + (vk+1)x = 0, x ∈ R, t � 0, k ∈ R, k > 1,
v(x, 0) = v0(x),

(1.9)

which satisfies the scaling property. Talking more precisely, if v(x, t) is a solution of the gKdV with initial
data v0(x) then for λ > 0, so is vλ(x, t) = λ

2
k v(λx, λ3t) with initial data vλ(x, 0) = λ

2
k v(λx, 0). Note that,

the homogeneous Sobolev norm of the initial data remains invariant if s − 1
2 + 2

k = 0. This suggests that
the scaling Sobolev regularity is 1

2 − 2
k . For the gKdV equation, Table 1 shows the known well-posedness

results and their relation to scaling index.
The best well-posedness results for the IVP (1.9) shown in Table 1 are obtained by Kenig et al. [15,16]

(for k = 1, 2 and k � 4) and Grünrock [13] (for k = 3). These results are sharp since the flow-map u0 → u(t)
is not locally uniformly continuous from Ḣs(R) to Ḣs(R), for s < sk with s1 = −3

4 , s2 = 1
4 , s3 = −1

6 , and
for k � 4, sk = 1

2 − 2
k (see [1,17]).

Generally, for dissipative problem, the scaling index is better in the sense that one can lower the regularity
requirement on the data to get well-posedness. As can be seen in the proofs of Theorems 1.1 and 1.2 (below),
our method depends on the leading order of L. If we discard the third order derivative (dispersive part) and
consider the dissipative operator L with the Fourier symbol |ξ|p, with p � 2k + 1 in (1.1), i.e.,{

vt + ηLv + (vk+1)x = 0, L̂v(ξ) = |ξ|pv̂(ξ)
v(x, 0) = v0(x),

(1.10)

it is easy to check that, if v(x, t) solves (1.10) with initial data v(x, 0), then for λ > 0 so does vλ(x, t) =
λ

p−1
k v(λx, λpt) with initial data vλ(x, 0) = λ

p−1
k v(λx, 0). Note that∥∥vλ(0)

∥∥
Ḣs = λp−1− k

2 +ks
∥∥v(0)

∥∥
Ḣs . (1.11)

From (1.11) we see that the scaling index for this particular situation is sc := 1
2 − p−1

k . Observe that,
for p = 2k + 1 we get sc = −3 for any value of k, which is much lower than that for the gKdV equation if
2
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k > 1. Also, note that for p = 2k+1, one has 1
2 −

p+1
k+1 = −3

2 . With this observation we see that Theorem 1.1
provides the local well-posedness result up to the Sobolev regularity given by scaling for p = 2k+1. However,
for p > 2k + 1, the regularity requirement for local well-posedness is higher than sc. Since the regularity
requirement for the IVP (1.2) is higher than 1 to that for the IVP (1.1), we see that the scaling index for
this is sc + 1. Therefore, for p = 2k + 1, the well-posedness result given by Theorem 1.2 also goes up to the
scaling index −1

2 .
Having discussed scaling argument, our next task is to check if the local results in Theorems 1.1 and 1.2 are

sharp. Recently, Molinet et al. [19] introduced a technique to prove that the generalized Burgers equation is
“ill-posed” by showing that the mapping data-solution fails to be Ck for certain range of Sobolev regularity.
This method is further adapted to address such issue for the modified KdV–Burgers equation in [8]. Here, we
modify the technique introduced in [19] (see the use of Lemma 4.1 below) to address such issue considering
generalized nonlinearity as well as generalized dissipation and obtain the following “ill-posedness” results for
the IVPs (1.1) and (1.2) respectively in the sense that the mapping data-solution fails to be Ck and Ck+1.

Theorem 1.3. Let s < 1
2 −

p−1
k , then there does not exist any T > 0 such that the IVP (1.1) admits a unique

local solution defined in the interval [0, T ] such that the flow-map

v0 	→ v(t), t ∈ [0, T ], (1.12)

is Ck+1-differentiable at the origin from Hs(R) to C([0, T ];Hs(R)).

Theorem 1.4. Let s < 3
2 −

p−1
k , then there does not exist any T > 0 such that the IVP (1.2) admits a unique

local solution defined in the interval [0, T ] such that the flow-map

u0 	→ u(t), t ∈ [0, T ], (1.13)

is Ck+1-differentiable at the origin from Hs(R) to C([0, T ];Hs(R)).

Remark 1.5. We observe that, if p = 2k+1, one has 1
2 −

p+1
k+1 = −3

2 = 1
2 −

p−1
k and 3

2 −
p+1
k+1 = −1

2 = 3
2 −

p−1
k .

In view of this observation and the results of Theorems 1.3 and 1.4, the local well-posedness results given
by Theorems 1.1 and 1.2 are sharp for p = 2k + 1. However, for p > 2k + 1 one has that 1

2 − p+1
k+1 > sc and

3
2 − p+1

k+1 > sc + 1. Therefore, the well-posedness or ill-posedness issue of the IVPs (1.1) and (1.2) for values
of s respectively in [sc, 1

2 − p+1
k+1 ] and [sc + 1, 3

2 − p+1
k+1 ] is an open problem.

A detailed explanation about the particular examples that belong to the classes considered in (1.1)
and (1.2) and the known well-posedness results about them are presented in our earlier works [4,6] and
references therein.

Now, we comment about the global well-posedness. In [7], the IVP (1.1) is proved to be globally well-posed
for given data in Hs(R), s � 1, k = 1, 2, 3. As the models under consideration do not have conserved
quantities, the global well-posedness results have been proved by constructing appropriate a priori estimates.
However, for given data in Hs(R), s < 1 no a priori estimates are available. Also, the lack of conserved
quantities prevent us to use the recently introduced I-method in [10,11], to obtain global solution for the
low regularity data. It would be interesting to develop some new method to address global well-posedness
issues.

This paper is organized as follows: In Section 2, we prove some preliminary estimates. Section 3 is
dedicated to prove the local well-posedness results. Finally, we prove ill-posedness results in Section 4.
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2. Linear and nonlinear estimates

This section is devoted to obtain linear and nonlinear estimates that are essential in the proof of the
main results. We start with following estimate that the Fourier symbol defined in (1.3) satisfies.

Lemma 2.1. There exists M > 0 large such that for all |ξ| � M , one has that

Φ(ξ) = −|ξ|p + Φ1(ξ) < −1, (2.1)
|Φ1(ξ)|
|ξ|p � 1

2 , (2.2)

and

∣∣Φ(ξ)
∣∣ � |ξ|p

2 . (2.3)

Proof. The inequalities (2.1) and (2.2) are direct consequences of

lim
ξ→∞

Φ1(ξ) + 1
|ξ|p = 0 and lim

ξ→∞

|Φ1(ξ)|
|ξ|p = 0,

respectively.
The estimate (2.3) follows from (2.1) and (2.2). In fact, for |ξ| > M

∣∣Φ(ξ)
∣∣ = |ξ|p − Φ1(ξ) � |ξ|p

2 , (2.4)

and this concludes the proof of the (2.3). �
Lemma 2.2. The Fourier symbol Φ(ξ) given by (1.3) is bounded from above and the following estimate holds
true ∥∥etΦ(ξ)∥∥

L∞ � eTCM . (2.5)

Proof. From Lemma 2.1, there is M > 1 large enough such that for |ξ| � M one has Φ(ξ) < −1. Conse-
quently, etΦ(ξ) � e−t � 1. Now for |ξ| < M , it is easy to get Φ(ξ) < CM , so that etΦ(ξ) � eTCM . Therefore,
in any case ∥∥etΦ(ξ)∥∥

L∞ � eTCM . �
The following result is an elementary fact from calculus.

Lemma 2.3. Let f(t) = taetb with a > 0 and b < 0, then for all t � 0 one has

f(t) �
(

a

|b|

)a

e−a. (2.6)

Lemma 2.4 (Generalized Young’s Inequality). Let n � 1, 1 < r � ∞, and ri > 1 such that

1
r

+ n =
n+1∑ 1

ri
.

i=1
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Then there exists a constant cn such that for any u1, u2, . . . , un+1 ∈ S(R), we have

‖u1 ∗ u2 ∗ · · · ∗ un+1‖Lr � cn‖u1‖Lr1‖u2‖Lr2 · · · ‖un+1‖Lrn+1 . (2.7)

Proof. This inequality is obtained immediately, using the classical Young’s inequality and induction argu-
ment. �

Now we consider the IVP associated to the linear parts of (1.1) and (1.2),{
wt + wxxx + ηLw = 0, x, t � 0,
w(0) = w0.

(2.8)

The solution to (2.8) is given by w(x, t) = V (t)w0(x) where the semigroup V (t) is defined as

V̂ (t)w0(ξ) = eitξ
3+ηtΦ(ξ)ŵ0(ξ). (2.9)

In what follows we prove some estimates satisfied by the group defined in (2.9).

Lemma 2.5. Let 0 < T � 1, k > 1 and t ∈ [0, T ]. Then for all s ∈ R, we have∥∥V (t)w0
∥∥
Xs

T
� ‖w0‖Hs , (2.10)

where the implicit constant depends on M with M as in Lemma 2.1, k and p.

Proof. For s > 0 the proof is easy, so we give details only for s � 0. We start by estimating the first
component of the Xs

T -norm. We have that∥∥V (t)w0
∥∥
Hs =

∥∥〈ξ〉setΦ(ξ)ŵ0(ξ)
∥∥
L2 �

∥∥etΦ(ξ)∥∥
L∞‖w0‖Hs . (2.11)

Using (2.5) in (2.11), we get ∥∥V (t)w0
∥∥
Hs � eTCM ‖w0‖Hs . (2.12)

Now, we move to estimate the second component of the Xs
T -norm. We have

tαk
∥∥V̂ (t)w0

∥∥
L

k+1
k

= tαk
∥∥etΦ(ξ)ŵ0

∥∥
L

k+1
k

= tαk
∥∥〈ξ〉−setΦ(ξ)〈ξ〉sŵ0

∥∥
L

k+1
k

� tαk
∥∥〈ξ〉−setΦ(ξ)∥∥

L
2(k+1)
k−1

∥∥〈ξ〉sŵ0
∥∥
L2

� tαk
∥∥〈ξ〉|s|etΦ(ξ)∥∥

L
2(k+1)
k−1

‖w0‖Hs . (2.13)

To obtain an estimate for ‖〈ξ〉|s|etΦ(ξ)‖
L

2(k+1)
k−1

we consider M as in Lemma 2.1 and write it as

∥∥〈ξ〉|s|etΦ(ξ)∥∥
L

2(k+1)
k−1

�
∥∥〈ξ〉|s|etΦ(ξ)χ{|ξ|�M}

∥∥
L

2(k+1)
k−1

+
∥∥〈ξ〉|s|etΦ(ξ)χ{|ξ|>M}

∥∥
L

2(k+1)
k−1

. (2.14)

The low frequency part in (2.14) is bounded by some constant CM . For the high frequency part we use
the estimate (2.3) from Lemma 2.1 to get Φ(ξ) � − |ξ|p and the estimate 〈ξ〉|s| � |ξ||s|, to write it as
2
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∥∥〈ξ〉|s|etΦ(ξ)χ{|ξ|>M}
∥∥
L

2(k+1)
k−1

=
( ∫

χ{|ξ|>M}

〈ξ〉−s 2(k+1)
k−1 etΦ(ξ) 2(k+1)

k−1 dξ

) k−1
2(k+1)

�
( ∫

χ{|ξ|>M}

|ξ|−s 2(k+1)
k−1 e−t|ξ|p (k+1)

k−1 dξ

) k−1
2(k+1)

�
( ∫

R

|ξ|−s 2(k+1)
k−1 e−t|ξ|p (k+1)

k−1 dξ

) k−1
2(k+1)

. (2.15)

Now, making change of variable x = ξt
1
p , we get from (2.15)

∥∥〈ξ〉|s|etΦ(ξ)χ{|ξ|>M}
∥∥
L

2(k+1)
k−1

�
(∫

R

|x|−s 2(k+1)
k−1 ts

2(k+1)
p(k−1) e−|x|p (k+1)

k−1 t−
1
p dx

) k−1
2(k+1)

= t
s
p−

k−1
2p(k+1)

(∫
R

|x|−s 2(k+1)
k−1 e−|x|p (k+1)

k−1 dx

) k−1
2(k+1)

< Ct
s
p−

k−1
2p(k+1) . (2.16)

Since t ∈ [0, T ] with T � 1, s � 0 and

αk + s

p
− k − 1

2p(k + 1) = 0, (2.17)

we get from (2.14) and (2.16) that

tαk
∥∥〈ξ〉|s|etΦ(ξ)∥∥

L
2(k+1)
k−1

� CM,k,p. (2.18)

Inserting (2.18) in (2.12) we obtain the required estimate (2.10). �
Lemma 2.6. Let 0 < T � 1 and t ∈ [0, T ]. Then for all s ∈ R, we have∥∥V (t)w0

∥∥
Y s
T

� ‖w0‖Hs , (2.19)

where the implicit constant depends on k, p and M with M as in Lemma 2.1.

Proof. The estimate for the first component of the Y s
T -norm has already been obtained in (2.12). In what

follows, we estimate the second component of the Y s
T -norm. We only consider the case when s < 0. In the

case when s � 0 the estimates follow easily. We have

tβk
∥∥ξV̂ (t)w0(ξ)

∥∥
L

k+1
k

= tβk
∥∥ξetΦ(ξ)ŵ0

∥∥
L

k+1
k

= tβk
∥∥ξ〈ξ〉−setΦ(ξ)〈ξ〉sŵ0

∥∥
L

k+1
k

� tβk
∥∥ξ〈ξ〉|s|etΦ(ξ)∥∥

Lrk
‖w0‖Hs , (2.20)

where rk = 1/δk. Now, let M large as in Lemma 2.1, we obtain

tβk
∥∥ξ〈ξ〉|s|etΦ(ξ)∥∥

Lrk
� tβk

∥∥ξ〈ξ〉|s|etΦ(ξ)χ{|ξ|�M}
∥∥
Lrk

+ tβk
∥∥ξ〈ξ〉|s|etΦ(ξ)χ{|ξ|>M}

∥∥
Lrk

=: J1 + J2. (2.21)
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Since 0 � t � T � 1, we have

J1 � CM,pt
βk � CM,p. (2.22)

Now, we move to estimate the high-frequency part J2. For this, we use Lemma 2.3 thus Φ(ξ) < −|ξ|p/2
if |ξ| > M , we get

J2 = tβk
∥∥ξ〈ξ〉|s|etΦ(ξ)χ{|ξ|>M}

∥∥
Lrk

� tβk
∥∥ξ〈ξ〉|s|e−t|ξ|p/2χ{|ξ|>M}

∥∥
Lrk

. (2.23)

Since M > 1 is large, 〈ξ〉|s| � |ξ||s|, a change of the variables x = t1/pξ, yields

J2 � tβk
∥∥|ξ|1+|s|e−t|ξ|p/2∥∥

Lrk
� tβkt−βk

∥∥|x|1+|s|e−|x|p/2∥∥
Lrk

, (2.24)

and consequently

J2 � C. (2.25)

The conclusion of the lemma follows from (2.20), (2.21), (2.22) and (2.25). �
In what follows we present two technical lemmas.

Lemma 2.7. Let k > 1, p � 2k + 1 and 3
2 − p+1

k+1 < s � 0, then there exists a number a0 > 0 such that

1 + 2s
p

< a0 < 2
(
1 − (k + 1)βk

)
. (2.26)

Proof. In order to prove (2.26), it suffices to prove that

1 + 2s
p

< 2 − 2(k + 1)(1 + δk − s)
p

, (2.27)

this inequality is equivalent with

s >
3
2 − p− 1

k
,

which is true because

s >
3
2 − p + 1

k + 1 � 3
2 − p− 1

k
,

where the last inequality is equivalent with p � 2k + 1.
Now, to show that a0 can be chosen positive, we observe that

2 − 2(k + 1)(1 + δk − s)
p

> 0 ⇐⇒ s >
3
2 − p + 1

k + 1 ,

which is true by hypothesis of the lemma. �
Now we state another technical result whose proof is very similar to that of Lemma 2.7.
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Lemma 2.8. Let k > 1, p � 2k + 1 and 1
2 − p+1

k+1 < s � 0, then there exists a number a1 > 0 such that

3 + 2s
p

< a1 < 2
(
1 − (k + 1)αk

)
. (2.28)

Lemma 2.9. Let k > 1, p � 2k + 1 and 1
2 − p+1

k+1 < s � 0 and a1 as in Lemma 2.8, then for 0 < T � 1 and
τ ∈ (0, T ], we have

∥∥ξ〈ξ〉seτΦ(ξ)∥∥
L2

ξ
� 1

τ
a1
2
. (2.29)

Proof. Let M be as in Lemma 2.1. We decompose the integral as

∥∥ξ〈ξ〉seτΦ(ξ)∥∥2
L2

ξ
=

∫
|ξ|�M

ξ2〈ξ〉2se2τΦ(ξ) dξ +
∫

|ξ|�M

ξ2〈ξ〉2se2τΦ(ξ) dξ =: I1 + I2. (2.30)

In the first integral, since a1 > 0 and τ ∈ [0, 1] we have

I1 �
∫

|ξ|�M

M2〈M〉2|s|e2τCM,p dξ � 2M3〈M〉2|s|e2CM,p � CM,p,s
1
τa1

. (2.31)

Now, we consider the second integral in (2.30). We have 〈ξ〉s � |ξ|s. For sufficiently large M , considering
b = 2Φ(ξ) < 0 (see Lemma 2.1), and a = a1 > 0, one can get, using the estimate (2.6) that

I2 �
∫

|ξ|>M

|ξ|2s+2e2τΦ(ξ) dξ �
∫

|ξ|>M

1
|ξ|−2s−2

1
τa1 |Φ(ξ)|a1

dξ. (2.32)

Using (2.3) in (2.32), one obtains

I2 � 1
τa1

∫
|ξ|>M

1
|ξ|−2s−2

1
|ξ|pa1

dξ � 1
τa1

, (2.33)

where in the last inequality the fact that −2s− 2 + pa1 > 1 has been used.
Inserting (2.31) and (2.33) in (2.30) we obtain the required estimate (2.29). �

Lemma 2.10. Let k > 1, p � 2k + 1 and 3
2 − p+1

k+1 < s � 0 and a0 as in Lemma 2.7, then

∥∥〈ξ〉seτΦ(ξ)∥∥
L2 � 1

τ
a0
2
, (2.34)

and ∥∥ξeτΦ(ξ)∥∥
L

k+1
k

�k
1

τ
2k+1

(k+1)p
, (2.35)

where 0 < τ � T � 1.

Proof. For M large as in Lemma 2.1, we have

∥∥〈ξ〉seτΦ(ξ)∥∥2
L2 =

∫
〈ξ〉2se2τΦ(ξ) dξ +

∫
〈ξ〉2se2τΦ(ξ) dξ =: A + B.
|ξ|�M |ξ|>M
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Now, for τ ∈ (0, T ] and a0 as in Lemma 2.7, one has

A � CMeTCM,p � CMeTCM,p

τa0
. (2.36)

To obtain an estimate for the high frequency part B, we use estimate (2.6) with a = a0 > 0 and
b = 2Φ(ξ) < 0, to obtain

B �
∫

|ξ|>M

|ξ|2s
τa0

(a0e
−1)a0

|Φ(ξ)|a0
dξ �

∫
|ξ|>M

1
|ξ|pa0−2s

1
τa0

dξ � 1
τa0

, (2.37)

where Lemma 2.1 and pa0 − 2s > 1 have been used. This concludes the proof of (2.34).
In order to prove (2.35) we proceed as above. For M large as in Lemma 2.1, we obtain

∥∥ξeτΦ(ξ)∥∥
L

k+1
k

�
( ∫

|ξ|�M

|ξ| k+1
k e

k+1
k τΦ(ξ) dξ

) k
k+1

+
( ∫

|ξ|>M

|ξ| k+1
k e

k+1
k τΦ(ξ) dξ

) k
k+1

:= D + E. (2.38)

Considering 0 < τ � T � 1 in the low frequency part D we have

D � Ck,M � 1
τ

2k+1
(k+1)p

. (2.39)

Using Lemma 2.1 in the high frequency part D (Φ(ξ) � −|ξ|p/2 if |ξ| > M) we arrive to

E �
( ∫
|ξ|>M

|ξ| k+1
k e−

τ(k+1)|ξ|p
2k dξ

) k
k+1

�
(∫

R

|ξ| k+1
k e−

τ(k+1)|ξ|p
2k dξ

) k
k+1

. (2.40)

A change of variables x = τ1/pξ in the RHS of (2.40), gives

E � 1
τ

2k+1
(k+1)p

. (2.41)

Now, plugging (2.39) and (2.41) in (2.38) we get the desired estimate (2.35). �
Proposition 2.11. Let k ∈ R, k > 1, 1

2 − p+1
k+1 < s � 0, p � 2k + 1, 0 < T � 1 and t ∈ [0, T ]. Then we have

∥∥∥∥∥
t∫

0

V
(
t− t′

)
∂x

(
uk+1)(t′) dt′∥∥∥∥∥

Xs
T

� Tα‖u‖k+1
Xs

T
, (2.42)

where α > 0.

Proof. Using the definition of V (t) and Minkowski’s inequality, we have

∥∥∥∥∥
t∫

0

V
(
t− t′

)
∂x

(
uk+1)(t′) dt′∥∥∥∥∥

Hs

�
t∫

0

∥∥ξ〈ξ〉se(t−t′)Φ(ξ) ̂uk+1
(
t′
)
dt′

∥∥
L2

ξ

�
t∫ ∥∥ξ〈ξ〉se(t−t′)Φ(ξ)∥∥

L2
ξ

∥∥ ̂uk+1
(
t′
)∥∥

L∞
ξ
dt′. (2.43)
0
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The generalized Young’s inequality from Lemma 2.4 and the definition of Xs
T norm yield

∥∥ ̂uk+1
(
t′
)∥∥

L∞
ξ

� Ck

∥∥û(t′)∥∥k+1

L
k+1
k

ξ

� Ckt
′−(k+1)αk‖u‖k+1

Xs
T
. (2.44)

Now, using estimate (2.29) we obtain, that

∥∥ξ〈ξ〉se(t−t′)Φ(ξ)∥∥
L2

ξ
� 1

(t− t′)
a1
2
. (2.45)

Inserting (2.45) and (2.44) in (2.43), we get

∥∥∥∥∥
t∫

0

V
(
t− t′

)
∂x

(
uk+1)(t′) dt′∥∥∥∥∥

Hs

� ‖u‖k+1
Xs

T

t∫
0

1
(t− t′)

a1
2

1
t′(k+1)αk

dt′. (2.46)

Making a change of variables t′ = tτ , we get

∥∥∥∥∥
t∫

0

V
(
t− t′

)
∂x

(
uk+1)(t′) dt′∥∥∥∥∥

Hs

� t1−
a1
2 −αk(k+1)‖u‖k+1

Xs
T

1∫
0

1
(1 − τ)

a1
2

1
τ (k+1)αk

dτ

� t1−
a1
2 −αk(k+1)‖u‖k+1

Xs
T
, (2.47)

where in the last inequality a1 < 2 and αk(k + 1) < 1 have been used.
Similarly

tαk

∥∥∥∥∥Fx

( t∫
0

V
(
t− t′

)
∂x

(
uk+1)(t′) dt′)∥∥∥∥∥

L
k+1
k

� tαk

t∫
0

∥∥e(t−t′)Φ(ξ)ξ ̂uk+1
(
t′
)∥∥

L
k+1
k

dt′

� ‖u‖k+1
Xs

T
tαk

t∫
0

1
t′αk(k+1)

∥∥ξe(t−t′)Φ(ξ)∥∥
L

k+1
k

dt′. (2.48)

From (2.35), we have

∥∥ξe(t−t′)Φ(ξ)∥∥
L

k+1
k

�
(
t− t′

)− 2k+1
p(k+1) . (2.49)

Inserting (2.49) in (2.48), we obtain

tαk

∥∥∥∥∥Fx

( t∫
0

V
(
t− t′

)
∂x

(
uk+1)(t′) dt′)∥∥∥∥∥

L
k+1
k

� tαk

t∫
0

1
(t− t′)

2k+1
p(k+1)

1
t′αk(k+1) dt

′. (2.50)

Again, making a change of variables t′ = tτ , one has

tαk

∥∥∥∥∥Fx

t∫
0

V
(
t− t′

)
∂x

(
uk+1)(t′) dt′∥∥∥∥∥

L
k+1
k

� t1+αk− 2k+1
p(k+1)−αk(k+1)

1∫
0

1
(1 − τ)

2k+1
p(k+1)

1
ταk(k+1) dτ

� t1−kαk− 2k+1
p(k+1) . (2.51)

We notice that
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1 − kαk − 2k + 1
p(k + 1) > 0 ⇐⇒ s >

1
2 − p− 1

k
. (2.52)

The second inequality in (2.52) holds true, since p � 2k + 1, implies that

s >
1
2 − p + 1

k + 1 � 1
2 − p− 1

k
,

and this completes the proof. �
Proposition 2.12. Let k > 1, p � 2k + 1, 3

2 − p+1
k+1 < s � 0, 0 < T � 1 and t ∈ [0, T ]. Then we have

∥∥∥∥∥
t∫

0

V
(
t− t′

)
(ux)k+1(t′) dt′∥∥∥∥∥

Y s
T

� T θ‖u‖k+1
Y s
T

, (2.53)

where θ > 0.

Proof. The proof of this proposition is analogous to that of Proposition 2.11. So we only give a sketch. As
in the proof of Proposition 2.11, using (2.34) one gets

∥∥∥∥∥
t∫

0

V
(
t− t′

)
(ux)k+1(t′) dt′∥∥∥∥∥

Hs

� t1−
a0
2 −(k+1)βk‖u‖k+1

Y s
T

1∫
0

1
|1 − τ | a0

2 |τ |(k+1)βk

dτ. (2.54)

For our choice of a0 as in Lemma 2.7, p � 2k + 1 and s > 3
2 − p+1

k+1 one has a0 < 2 and (k + 1)βk < 1.
Therefore the integral in the RHS of (2.54) is finite. Also we have

1 − a0

2 − (k + 1)βk > 0, (2.55)

so it is easy to deduce that

∥∥∥∥∥
t∫

0

V
(
t− t′

)
(ux)k+1(t′) dt′∥∥∥∥∥

Hs

� t1−
a0
2 −(k+1)βk‖u‖k+1

Y s
T

. (2.56)

To estimate the second part of the Y s
T -norm, we use Minkowski’s inequality, Young’s inequality and (2.35),

to get

tβk

∥∥∥∥∥ξF
( t∫

0

∂xV
(
t− t′

)
(ux)k+1(t′) dt′)(ξ)

∥∥∥∥∥
L

k+1
k

� t1−kβk−γ‖u‖k+1
Y s
T

1∫
0

1
|1 − τ |γ |τ |(k+1)βk

dτ, (2.57)

where γ = 2k+1
(k+1)p .

For our choice of k � 1, p � 2k+1 and s > 3
2 −

p+1
k+1 the integral in the RHS of (2.57) is finite. Therefore,

from (2.57), we obtain

tβk

∥∥∥∥∥ξF
( t∫

∂xV
(
t− t′

)
(ux)k+1(t′) dt′)(ξ)

∥∥∥∥∥ k+1
� t1−kβk−γ‖u‖k+1

Y s
T

. (2.58)

0 L k
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Combining (2.56) and (2.58) we get the required estimate (2.53). Observe that

1 − kβk − γ > 0 ⇐⇒ s >
3
2 − p− 1

k
,

and the second inequality holds true, since p � 2k + 1, implies that

s >
3
2 − p + 1

k + 1 � 3
2 − p− 1

k
. �

3. Proof of the well-posedness results

This section we will use the linear and nonlinear estimates to provide proofs of the local well-posedness
results stated in Theorems 1.1 and 1.2.

Proof of Theorem 1.1. The case s � 0, was considered in our earlier work [6]. Thus, from here onwards, we
only consider the case when 1

2 − p+1
k+1 < s � 0.

Now consider the IVP (1.1) in its equivalent integral form

v(t) = V (t)v0 −
t∫

0

V
(
t− t′

)(
vk+1)

x

(
t′
)
dt′, (3.1)

where V (t) is the semigroup associated with the linear part given by (2.9).
We define an application

Ψ(v)(t) = V (t)v0 −
t∫

0

V
(
t− t′

)(
vk+1)

x

(
t′
)
dt′. (3.2)

For s > 1
2 − p+1

k+1 , r > 0 and 0 < T � 1, let us define a ball

BT
r =

{
f ∈ Xs

T ; ‖f‖Xs
T

� r
}
.

We will prove that there exist r > 0 and 0 < T � 1 such that the application Ψ maps BT
r into BT

r and is a
contraction. Let v ∈ BT

r . By using Lemma 2.5 and Proposition 2.11, we get∥∥Ψ(v)
∥∥
Xs

T
� c‖v0‖Hs + cTα‖v‖k+1

Xs
T
, (3.3)

where α > 0.
Now, using the definition of BT

r , one obtains

∥∥Ψ(v)
∥∥
Xs

T
� r

4 + cTαrk+1 � r

2 , (3.4)

where we have chosen r = 4c‖v0‖Hs and cTαrk = 1/4. Therefore, from (3.4) we see that the application Ψ

maps BT
r into itself. A similar argument proves that Ψ is a contraction. Hence Ψ has a fixed point v which is

a solution of the IVP (1.1) such that v ∈ C([0, T ], Hs(R)). The rest of the proof follows standard argument,
see for example [15]. �
Proof of Theorem 1.2. The proof of this theorem is similar to the one presented for Theorem 1.1. Here, we
will use the estimates from Lemma 2.6 and Proposition 2.12. So, we omit the details. �
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4. Ill-posedness result

In this section we will use the ideas presented in [18] and [19] to prove the ill-posedness results stated
in Theorems 1.3 and 1.4. The idea is to prove that there are no spaces Xs

T and Y s
T that are continuously

embedded in C([0, T ];Hs(R)) on which a contraction mapping argument can be applied.
We start with a lemma of elementary calculus which serve as important tools in the proof of Proposi-

tions 4.3 and 4.4.

Lemma 4.1. Let g : Rn → R be a continuous function and f : Rn → R be a positive function. If for any
x ∈ Rn, |g(x)| � c0 > 0, then ∣∣∣∣ ∫

Rn

f(x)g(x) dx
∣∣∣∣ � c0

∫
Rn

f(x) dx. (4.1)

Remark 4.2. Observe that the estimate (4.1) in Lemma 4.1 is false if g is a complex valued function. In fact,
if we consider n = 1, g(x) = eix and f(x) = χ[−π,π](x), the hypotheses of Lemma 4.1 are satisfied but the
estimate (4.1) does not hold.

The following proposition plays a central role in the proof of the ill-posedness result stated in Theorem 1.3.

Proposition 4.3. Let k ∈ Z+, k > 1, s < 1
2 − p−1

k and T > 0. Then there does not exist a space Xs
T

continuously embedded in C([0, T ];Hs(R)) such that∥∥V (t)v0
∥∥
Xs

T
� ‖v0‖Hs , (4.2)∥∥∥∥∥

t∫
0

V
(
t− t′

)
∂x

(
v
(
t′
))k+1

dt′

∥∥∥∥∥
Xs

T

� ‖v‖k+1
Xs

T
. (4.3)

Proof. The proof follows a contradiction argument. If possible, suppose that there exists a space Xs
T that is

continuously embedded in C([0, T ];Hs(R)) such that the estimates (4.2) and (4.3) hold true. If we consider
v = V (t)v0 then from (4.2) and (4.3), we get

∥∥∥∥∥
t∫

0

V
(
t− t′

)
∂x

[
V
(
t′
)
v0
]k+1

dt′

∥∥∥∥∥
Hs

� ‖v0‖k+1
Hs . (4.4)

The main idea to complete the proof is to find appropriate initial data v0 for which the estimate (4.4)
fails to hold whenever s < 1

2 − p−1
k .

Let N � 1, and A and B, A < B be two positive numbers to be chosen later (see (4.16)). Define an
initial data via Fourier transform

v̂0(ξ) := N− 2s+1
2 χ[A,B](ξ/N), (4.5)

a simple calculation shows that, for all s ∈ R, one has ‖v0‖Hs ∼ 1.
Now, we move to calculate the Hs norm of f(x, t), where

f(x, t) :=
t∫
V
(
t− t′

)
∂x

[
V
(
t′
)
v0
]k+1

dt′. (4.6)

0
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Taking the Fourier transform in the space variable x, we get

f̂(t)(ξ) =
t∫

0

ei(t−t′)ξ3+(t−t′)Φ(ξ)iξFx

[
V
(
t′
)
v0
]k+1(ξ) dt′

= eitξ
3+tΦ(ξ)iξ

t∫
0

e−it′ξ3−t′Φ(ξ)Fx

[
V
(
t′
)
v0
]k+1(ξ) dt′. (4.7)

Defining

ϕ1 := ϕ1(ξ, ξ1, . . . , ξk) = (ξ − ξ1 − · · · − ξk)3 +
k∑

j=1
ξ3
j (4.8)

and

ϕ2 := ϕ2(ξ, ξ1, . . . , ξk) = Φ(ξ − ξ1 − · · · − ξk) +
k∑

j=1
Φ(ξj), (4.9)

one can obtain

Fx

[
V
(
t′
)
v0
]k+1(ξ) = N−(k+1) 2s+1

2

∫
Rk

et
′[iϕ1+ϕ2]χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

)

×
k∏

j=1
χ[A,B]

(
ξj
N

)
dξ1 · · · dξk. (4.10)

Let MN,ξ(t) = N−(k+1) 2s+1
2 eitξ

3+tΦ(ξ)iξ. Inserting (4.10) in (4.7), and using Fubini’s Theorem, we have

f̂(t)(ξ) = MN,ξ(t)
∫
Rk

χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

χ[A,B]

(
ξj
N

) t∫
0

e−it′ξ3−t′Φ(ξ)et
′[iϕ1+ϕ2] dt′ dξ1 · · · dξk

= MN,ξ(t)
∫
Rk

χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

χ[A,B]

(
ξj
N

) t∫
0

et
′[i(ϕ1−ξ3)+ϕ2−Φ(ξ)] dt′ dξ1 · · · dξk

= MN,ξ(t)
∫
Rk

χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

χ[A,B]

(
ξj
N

)
et[i(ϕ1−ξ3)+ϕ2−Φ(ξ)] − 1
i(ϕ1 − ξ3) + ϕ2 − Φ(ξ) dξ1 · · · dξk. (4.11)

Observe that∣∣∣∣ ∫
Rk

χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

χ[A,B]

(
ξj
N

)
et[i(ϕ1−ξ3)+ϕ2−Φ(ξ)] − 1
i(ϕ1 − ξ3) + ϕ2 − Φ(ξ) dξ1 · · · dξk

∣∣∣∣
�

∣∣∣∣ ∫
Rk

χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

χ[A,B]

(
ξj
N

)
Re

{
et[i(ϕ1−ξ3)+ϕ2−Φ(ξ)] − 1
i(ϕ1 − ξ3) + ϕ2 − Φ(ξ)

}
dξ1 · · · dξk

∣∣∣∣. (4.12)

Now, in order to apply Lemma 4.1 (see Remark 4.2), we need to estimate the term
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Re
{
et[i(ϕ1−ξ3)+ϕ2−Φ(ξ)] − 1
i(ϕ1 − ξ3) + ϕ2 − Φ(ξ)

}
= ω2(cos(tω1)etω2 − 1) + ω1 sin(tω1)etω2

ω2
1 + ω2

2
, (4.13)

where ω1 := ϕ1 − ξ3 and ω2 := ϕ2 − Φ(ξ).
We consider N > M

A(k+1) , where M is as in Lemma 2.1 and use (2.1) and (2.3), to obtain

ω2 = ϕ2 − Φ(ξ) = Φ(ξ − ξ1 − · · · − ξk) +
k∑

j=1
Φ(ξj) − Φ(ξ)

� −|ξ − ξ1 − · · · − ξk|p + Φ1(ξ − ξ1 − · · · − ξk) −
k∑

j=1

(
|ξj |p − Φ1(ξj)

)
+ |ξ|p

2

� −(k + 1)(BN)p + Φ1(ξ − ξ1 − · · · − ξk) +
k∑

j=1
Φ1(ξj) + (k + 1)p(AN)p

2 . (4.14)

Since Φ1 is a polynomial of degree q, with q < p, we obtain from (4.14) that

ω2 = ϕ2 − Φ(ξ) � Np, (4.15)

provided

(k + 1)p(AN)p

2 − (k + 1)(BN)p >
(k + 1)p(AN)p

4 ⇐⇒ A >
41/p

(k + 1)1−1/pB. (4.16)

We also have |ω1| � N3. So, considering

t := t0 = CN−p, C > 1, (4.17)

where p � 2k + 1, k > 1 and N large, one obtains

cos(t0ω1)et0ω2 − 1 � et0ω2

4 . (4.18)

In this way, using triangular inequality and (4.15), (4.17) and (4.18) we have for N large

∣∣∣∣Re
{
et0[i(ϕ1−ξ3)+ϕ2−Φ(ξ)] − 1
i(ϕ1 − ξ3) + ϕ2 − Φ(ξ)

}∣∣∣∣ = |ω2(cos(t0ω1)et0ω2 − 1) + ω1 sin(t0ω1)et0ω2 |
ω2

1 + ω2
2

� |ω2(cos(t0ω1)et0ω2 − 1)| − |ω1 sin(t0ω1)et0ω2 |
ω2

1 + ω2
2

� |ω2(cos(t0ω1)et0ω2 − 1)|
2(ω2

1 + ω2
2)

� ω2e
t0ω2

ω2
1 + ω2

2

� t0ω
2
2

ω2
1 + ω2

2

� t0, (4.19)

where in the last inequality, we used the fact ω1 � ω2, for p � 2k + 1 > 3.
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Now using Lemma 4.1 and combining (4.11), (4.12) and (4.19), one gets

∣∣f̂(t0)(ξ)
∣∣ � t0

∣∣MN,ξ(t0)
∣∣ ∫
Rk

χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

χ[A,B]

(
ξj
N

)
dξ1 · · · dξk

= t0
∣∣MN,ξ(t0)

∣∣Nk

∫
Rk

χ[A,B]

(
ξ

N
− x1 − · · · − xk

) k∏
j=1

χ[A,B](xj) dx1 · · · dxk

� t0N
k
∣∣MN,ξ(t0)

∣∣χ[A,B]∗
k+1· · · ∗χ[A,B]

(
ξ

N

)
. (4.20)

Let

h(ξ) := χ[A,B]∗
k+1· · · ∗χ[A,B](ξ), (4.21)

and consider N very large (in order to apply Lemma 2.1) to get

∥∥f(t0)
∥∥2
Hs � CN−(k+1)(2s+1)N2k

∫
R

〈ξ〉2st20e2t0Φ(ξ)ξ2
∣∣∣∣h( ξ

N

)∣∣∣∣2 dξ
= CN−(k+1)(2s+1)N2k

B(k+1)N∫
A(k+1)N

〈ξ〉2st20e−4t0|ξ|pξ2
∣∣∣∣h( ξ

N

)∣∣∣∣2 dξ

� CN−(k+1)(2s+1)N2k

B(k+1)N∫
A(k+1)N

(
t20|ξ|2p

)
e−4t0|ξ|p |ξ|2s+2−2p

∣∣∣∣h( ξ

N

)∣∣∣∣2 dξ

= CN−(k+1)(2s+1)N2kN2s+3

B(k+1)∫
A(k+1)

(
t20|ξ|2p

)
e−4t0|ξ|p |ξ|2s+2−2p∣∣h(ξ)

∣∣2 dξ. (4.22)

Now, recalling that t0 ∼ N−p, we obtain,

sup
t∈[0,T ]

∥∥f(t)
∥∥2
Hs �

∥∥f(t0)
∥∥2
Hs � CN−(k+1)(2s+1)+2k−2p+2s+3. (4.23)

Since ‖v0‖Hs ∼ 1, in view of (4.4), the estimate (4.23) provides a contradiction if −(k+1)(2s+1)+2k+
2s− 2p + 3 > 0, i.e., if s < 1

2 − p−1
k , and this concludes the proof. �

Proof of Theorem 1.3. For v0 ∈ Hs(R), consider the Cauchy problem{
vt + vxxx + ηLv + (vk+1)x = 0, x ∈ R, t � 0,
v(x, 0) = εv0(x),

(4.24)

where ε > 0 is a parameter. The solution vε(x, t) of (4.24) depends on the parameter ε. We can write (4.24)
in the equivalent integral equation form as

vε(t) = εV (t)v0 −
t∫

0

V
(
t− t′

)(
vk+1)

x

(
t′
)
dt′, (4.25)

where, V (t) is the unitary group describing the solution of the linear part of the IVP (4.24).
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Differentiating vε(x, t) in (4.25) with respect ε and evaluating at ε = 0 we get

∂vε(x, t)
∂ε

∣∣∣∣
ε=0

= V (t)v0(x) =: v1(x) (4.26)

and

∂k+1vε(x, t)
∂εk+1

∣∣∣∣
ε=0

= Ck

t∫
0

V
(
t− t′

)
∂x

(
vk+1
1

(
x, t′

))
dt′ =: v2(x). (4.27)

If the flow-map is Ck+1 at the origin from Hs(R) to C([−T, T ];Hs(R)), we must have

‖v2‖L∞
T Hs(R) � ‖v0‖k+1

Hs(R). (4.28)

But from Proposition 4.3 we have seen that the estimate (4.28) fails to hold for s < 1
2 −

p−1
k if we consider

v0 given by (4.5) and this completes the proof of the theorem. �
The following result will be fundamental in the proof of Theorem 1.4.

Proposition 4.4. Let k ∈ Z+, k > 1, s < 3
2 − p−1

k and T > 0. Then there does not exists a space Xs
T

continuously embedded in C([0, T ];Hs(R)) such that∥∥V (t)u0
∥∥
Xs

T
� ‖u0‖Hs , (4.29)∥∥∥∥∥

t∫
0

V
(
t− t′

)(
∂xu

(
t′
))k+1

dt′

∥∥∥∥∥
Xs

T

� ‖u‖k+1
Xs

T
. (4.30)

Proof. The proof follows a contradiction argument. If possible, suppose that there exists a space Xs
T that

is continuously embedded in C([0, T ];Hs(R)) such that the estimates (4.29) and (4.30) hold true. If we
consider u = V (t)u0 then from (4.29) and (4.30), we get∥∥∥∥∥

t∫
0

V
(
t− t′

)[
∂xV

(
t′
)
u0

]k+1
dt′

∥∥∥∥∥
Hs

� ‖u0‖k+1
Hs . (4.31)

The main idea to complete the proof is to find an appropriate initial data u0 for which the estimate (4.31)
fails to hold whenever s < 3

2 − p−1
k . We will consider u0 := v0 with v0 defined in (4.5).

We define

g(x, t) :=
t∫

0

V
(
t− t′

)[
∂xV

(
t′
)
u0

]k+1
dt′, (4.32)

and calculate its Hs norm.
Taking the Fourier transform in the space variable x, we get

ĝ(t)(ξ) =
t∫

0

ei(t−t′)ξ3+(t−t′)Φ(ξ)Fx

[
∂xV

(
t′
)
u0

]k+1(ξ) dt′

= eitξ
3+tΦ(ξ)

t∫
e−it′ξ3−t′Φ(ξ)Fx

[
∂xV

(
t′
)
u0

]k+1(ξ) dt′. (4.33)

0
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Considering the same functions ϕ1 and ϕ2 defined in (4.8) and (4.9), one can obtain

Fx

[
∂xV

(
t′
)
u0

]k+1(ξ) = N−(k+1) 2s+1
2

∫
Rk

et
′[iϕ1+ϕ2]i(ξ − ξ1 − · · · − ξk)χ[A,B]

×
(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

iξjχ[A,B]

(
ξj
N

)
dξ1 · · · dξk. (4.34)

Let M̃N,ξ(t) = N−(k+1) 2s+1
2 eitξ

3+tΦ(ξ). Inserting (4.34) in (4.33), and using Fubini’s Theorem, we have

ĝ(t)(ξ) = M̃N,ξ(t)
∫
Rk

i(ξ − ξ1 − · · · − ξk)χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

iξjχ[A,B]

(
ξj
N

)

×
t∫

0

e−it′ξ3−t′Φ(ξ)et
′[iϕ1+ϕ2] dt′ dξ1 · · · dξk

= M̃N,ξ(t)ik+1
∫
Rk

(ξ − ξ1 − · · · − ξk)χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

ξjχ[A,B]

(
ξj
N

)

× et[i(ϕ1−ξ3)+ϕ2−Φ(ξ)] − 1
i(ϕ1 − ξ3) + ϕ2 − Φ(ξ) dξ1 · · · dξk. (4.35)

We consider N , A, B and t := t0 ∼ N−p as in proof of Proposition 4.3 and with a similar argument as
in (4.20), one can easily obtain

∣∣ĝ(t0)(ξ)∣∣ � t0N
k+1∣∣M̃N,ξ(t0)

∣∣ ∫
Rk

χ[A,B]

(
ξ − ξ1 − · · · − ξk

N

) k∏
j=1

χ[A,B]

(
ξj
N

)
dξ1 · · · dξk

= t0N
k+1∣∣M̃N,ξ(t0)

∣∣Nk

∫
Rk

χ[A,B]

(
ξ

N
− x1 − · · · − xk

) k∏
j=1

χ[A,B](xj) dx1 · · · dxk

� t0N
k+1Nk

∣∣M̃N,ξ(t0)
∣∣χ[A,B]∗

k+1· · · ∗χ[A,B]

(
ξ

N

)
. (4.36)

In this way, we get

∣∣ĝ(t0)(ξ)∣∣ � C
∣∣M̃N,ξ(t0)

∣∣t0N2k+1h

(
ξ

N

)
, (4.37)

where h is as in (4.21). Thus, for N very large, we have

∣∣ĝ(t0)(ξ)∣∣ � Ct0N
−(k+1) 2s+1

2 e−4t0|ξ|pN2k+1h

(
ξ

N

)
, (4.38)

and
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∥∥g(t0)∥∥2
Hs � CN−(k+1)(2s+1)N2(2k+1)

∫
R

〈ξ〉2st20e−4t0|ξ|p
∣∣∣∣h( ξ

N

)∣∣∣∣2 dξ
� CN−(k+1)(2s+1)N2(2k+1)

B(k+1)N∫
A(k+1)N

(
t20|ξ|2p

)
e−4t0|ξ|p |ξ|2s−2p

∣∣∣∣h( ξ

N

)∣∣∣∣2 dξ. (4.39)

As in (4.22), taking t0 ∼ N−p, we obtain that

sup
t∈[0,T ]

∥∥g(t)∥∥2
Hs �

∥∥g(t0)∥∥2
Hs � CN−(k+1)(2s+1)+2(2k+1)+2s−2p. (4.40)

In view of (4.31), the estimate (4.40) is a contradiction if −(k + 1)(2s+ 1) + 2(2k + 1) + 2s− 2p > 0, i.e., if
s < 3

2 − p−1
k , and this completes the proof of the proposition. �

Proof of Theorem 1.4. Proof of this theorem is very similar to that of Theorem 1.3 and follows by using
Proposition 4.4. So, we omit the details. �
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