期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:434 |
| Asymptotic formula on average path length of fractal networks modeled on Sierpinski gasket | |
| Article | |
| Gao, Fei1  Le, Anbo2  Xi, Lifeng3  Yin, Shuhua2  | |
| [1] Zhejiang Wanli Univ, Sch Comp Sci & Informat Technol, Ningbo 315100, Zhejiang, Peoples R China | |
| [2] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China | |
| [3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China | |
| 关键词: Fractal; Sierpinski gasket; Network; Self-similarity; | |
| DOI : 10.1016/j.jmaa.2015.10.001 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper, we introduce a new method to construct evolving networks based on the construction of the Sierpinski gasket. Using self-similarity and renewal theorem, we obtain the asymptotic formula for average path length of our evolving networks. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2015_10_001.pdf | 404KB |
PDF