| AIMS Mathematics | |
| Function space properties of the Cauchy transform on the Sierpinski gasket | |
| article | |
| Songran Wang1  Zhinmin Wang3  | |
| [1] Department of Mathematics, Shantou University;College of Science, Central South University of Forestry and Technology;School of Science, Hunan University of Technology | |
| 关键词: Cauchy transform; Sierpinski gasket; self-similar measure; Hardy space; multiplier; | |
| DOI : 10.3934/math.2023306 | |
| 学科分类:地球科学(综合) | |
| 来源: AIMS Press | |
PDF
|
|
【 摘 要 】
Let $ S_j(z) = \varepsilon_j +(z-\varepsilon_j)/2 $ be an iterated function system, where $ \varepsilon_j = e^{2j\pi i/3} $ for $ j = 0, 1, 2 $. Then, there exists a uniform self-similar measure $ \mu $ supported on a compact set $ K $, which is the attractor of $ \{S_j\}_{j = 0}^2 $. The Hausdorff dimension of the attractor $ K $ is $ \alpha = \log 3/\log 2 $. Let $ F(z) = \int_{K}(z-\omega)^{-1}d\mu(\omega) $ be the Cauchy transform of $ \mu $. In this paper, we consider the Hardy space and the multiplier property of $ F $. We prove that $ F' $ belongs to $ H^p $ for $ 0 < p < 1/(2-\alpha) $ and that $ F $ is a multiplier of some class of function space.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202302200002671ZK.pdf | 621KB |
PDF