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Abstract: Let S j(z) = ε j + (z − ε j)/2 be an iterated function system, where ε j = e2 jπi/3 for j = 0, 1, 2.
Then, there exists a uniform self-similar measure µ supported on a compact set K, which is the attractor
of {S j}

2
j=0. The Hausdorff dimension of the attractor K is α = log 3/ log 2. Let F(z) =

∫
K

(z−ω)−1dµ(ω)
be the Cauchy transform of µ. In this paper, we consider the Hardy space and the multiplier property
of F. We prove that F′ belongs to Hp for 0 < p < 1/(2 − α) and that F is a multiplier of some class of
function space.
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1. Introduction

The Cauchy transform of a measure in the plane is a useful tool for geometric measure
theory [1–3], and it has also important applications in solving integral equations [4,5]. If the measure
is a self-similar measure, the Cauchy transform of it has very rich fractal behavior. Stricharz et. al. [6]
initiated the study of the Cauchy transform F(z) =

∫
K

(z − ω)−1dµ(ω) of a self-similar measure µ with
compact support K, and they proved that F has a Holder continuous extension over K and showed
how to compute the Laurent expansion of F in the complement of a disk containing K. Soon
afterwards, more analytic and geometric properties of F were given by Dong and Lau [7–12]: for
example, the asymptotic behavior of the Laurent coefficients of F and the region of starlikeness of F.
They also gave estimates for the Taylor coefficients of the Cauchy transforms of some special
Hausdorff measures [13,14]. For the special case that K is the Sierpinski gasket, and µ is the
normalized Hausdorff measure on K, Dong and Lau [8–11] carried out a detailed study of the
properties of the mapping of the Cauchy transform on K and investigated some open problems
proposed in [6]. Away from K, F is well-behaved, but the image of F is chaotic near the boundary of

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023306


6065

K and is difficult to catch [see 6,7,12]. In this paper, we will consider the properties of the function
spaces of F(z) near the Sierpinski gasket.

Let S j(z) = ε j + (z − ε j)/2 be an iterated function system, where ε j = e2 jπi/3 for j = 0, 1, 2. The
attractor K of {S j}

2
j=0 is just the Sierpinski gasket (Figure 1). It is well known that K is a compact set,

C\K is a multiply connected domain, and the Hausdorff dimension of K is α = log 3/ log 2. We denote
unbounded connected region of C \K by △0 and the triangular connected region of C \K by △n(n ≥ 1).
Then, C \ K = ∪∞n=0△n.
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Figure 1. Sierpinski gasket.

Let µ be the uniform self-similar measure on K, i.e., µ is the restriction of the α -Hausdorffmeasure
on K normalized to a probability measure. With slight abusing of notation, we letHα be the Hausdorff
measure normalized on K. From the basic property of the Hausdorff measure [15], for E ⊂ C, we
haveHα(ϕ(E)) = Hα(E), where ϕ can be the complex conjugation or the rotation of eiθ. Also, for any
n ∈ Z, Hα(2nE) = 2αnH(E). The Cauchy transform of µ = Hα|K is

F(z) =
∫

K

dHα(w)
z − ω

. (1.1)

Our main consideration is on the dyadic points of ∂△0. With fixed k, for 1 ≤ m ≤ 2k − 1, let

zk,m =
m
2k ε1 + (1 −

m
2k )ε2 = −

1
2
+

m − 2k−1

2k

√
3i.

These are the dyadic points on the line segment joining the two vertices ε1 and ε2. The dyadic points
on the other two sides of ∂△0 can be obtained by zk,m multiplied by ε j, j = 1, 2. It suffices to consider
zk,m since ε jF(ε jz) = F(z), j = 0, 1, 2.

The paper is organized as follows. In Section 2, we introduce some necessary results and notations.
In Section 3, we give an Hp space property of F(1/z) on |z| < 1. In the final section, we study the
multiplier property of F(1/z) on |z| < 1.

2. Preliminaries

In this section, we first give some necessary notations and propositions firstly. Let T = eπi(K − 1)
be a relocation of the Sierpinski gasket K. The new vertices are at 0,

√
3eπi/6,

√
3e−πi/6. Set S jK =
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K j, j = 0, 1, 2. Let T j = eπi(K j−1), j = 0, 1, 2, denote the three triangular components of T containing
the respective vertices. We define the “Sierpinski cones” of T (Figure 2) as A0 =

⋃
n∈Z 2n(T1 ∪ T2). For

ℓ = 1, · · · , 5, let Aℓ = eℓπi/3A0, and

Hℓ(z) =
∫

Aℓ

dHα(ω)
(z − ω)2 .

o A0

Figure 2. Sierpinski cones.

It is easy to check that Hℓ(2z) = 2α−2Hℓ(z) by the scaling property of Hausdorffmeasure. In the sequel,
we need the following propositions.

Proposition 2.1. [9] There exists some constant C > 0 such that ,

max
dist(z,K)≥t

|F′(z)| ≤ Ctα−2, t > 0.

Proposition 2.2. [9] For 0 < ρ < 1, there exists some constant C > 0 which depends on ρ such that
for | arg z| < 5π/6 and 0 < |z| ≤ ρ

√
3,

|F′(1 + z) + H3(z)| ≤ C.

For the details of the proof of the above two propositions, we can see [10].

3. Hp property of F(1
z ) on |z| < 1

In this section, we consider the function space property of F′(1
z ) on D = {z : |z| < 1}. The Hardy

space Hp consists of analytic functions f in D such that

∥ f ∥p= sup
0≤r<1

( 1
2π

∫ 2π

0
| f (reiθ)|pdθ

)1/p
< +∞.

Theorem 3.1. Let g(z) = F(1
z ) for z ∈ D. Then, g′(z) ∈ Hp for 0 < p < 1

2−α and g′ < Hp for p ≥ 1
2−α ,

where α is the Hausdorff dimension of K.

Remark Similarly, we may prove that g(k)(z) ∈ Hp for 0 < p < 1
k+1−α and g(k)(z) < Hp for p ≥ 1

k+1−α .
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Proof. Note that g(z) is analytic in D, and g′(eiθ) exists for θ < {0, 2π/3, 4π/3}. By Theorem 2.6 in [16,
p. 21], we only need to prove g′(eiθ) ∈ Lp for 0 < p < 1/(2 − α), and g′(eiθ) < Lp for p ≥ 1/(2 − α).

For −π/3 ≤ θ < 0, let z = eiθ and z∗ = ρe−iθ ∈ ∂△0, where ρ > 0. By the sine rule, we have

dist(e−iθ,K) = sin(
π

6
− θ)|e−iθ − z∗|

= − sin
θ

2
(
√

3 cos
θ

2
+ sin

θ

2
)

≥ | sin
θ

2
|. (3.1)

From Proposition 2.1, there exists some constant C > 0 such that

|g′(z)| ≤ C dist (e−iθ,K)α−2
≤ C|θ|α−2, −

π

3
≤ θ < 0.

Notice that Hα and K are symmetric with respect to the real-axis. Then, g′(z̄) = g′(z), and∫ π/3
−π/3
|g′(eiθ)|pdθ = 2

∫ 0

−π/3
|g′(eiθ)|pdθ. Hence, for 0 < p < 1/(2 − α),

∫ π

−π

|g′(eiθ)|pdθ = 6
∫ 0

−π/3
|g′(eiθ)|pdθ ≤ C

∫ π/3

0
θp(α−2)dθ < +∞.

The above inequality gives g′(eiθ) ∈ Lp for 0 < p < 1/(2 − α) .
Next, we will prove g′(eiθ) < L

1
2−α . For 0 < t ≤

√
3/2 and |θ |< 5π/6, from Proposition 2.2, we

obtain

|F′(1 + teiθ) + 2(2−α)N H3(2Nteiθ)| ≤ C1, (3.2)

where the positive integer N satisfies 1/2 ≤ 2Nt < 1. For 0 < t < 1, let 1 + teiθ = eiφ. Then,

φ = φ(t) = arctan
t
√

1 − t2/4
1 − t2/2

and θ = θ(t) =
π

2
+ arcsin

t
2
. (3.3)

Since F′(eiφ) = −e−2iφg′(e−iφ)) and H3(2z) = 2α−2H3(z), we have

|e−2iφg′(e−iφ) − 2(2−α)N H3(2Nteiθ)| ≤ C1 (3.4)

by using (3.2). Define β = arcsin(t/2) and b = b(t) := 2Nt. Noting that b = b(t) ∈ [
1
2
, 1) and

i(eiβ − 1) = −2 sin(β/2)eiβ/2, we see that

H3(bieiβ) =
∫

A3

dHα(w)

(bi − w + bi(eiβ − 1))2

=

∫
A3

dHα(w)
(bi − w)2 +

∞∑
k=1

(k + 1)
∫

A3

(2b sin(β2 ))
k
e

kβi
2 dHα(w)

(bi − w)k+2

:= H3(bi) + ε(t). (3.5)

To estimate ε(t), we set E1 = −T1, E2 = −T2. Then,
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|ε(t)| ≤
∞∑

k=1

(k + 1)
∫

A3

(2b sin(β/2))kdHα(w)
|bi − w |k+2

=

∞∑
k=1

(k + 1)
∞∑

n=−∞

3n
∫

E1∪E2

(2b sin(β/2))kdHα(w)
|bi − 2nw |k+2

≤

∞∑
k=1

(k + 1)
∞∑

n=0

(
3
8

)n
∫

E1∪E2

(2b sin(β/2))kdHα(w)
|2−nbi − w |k+2

+

∞∑
k=1

(k + 1)
∞∑

n=1

(
1
3

)n
∫

E1∪E2

(2b sin(β/2))kdHα(w)
|bi − 2−nw |k+2 .

With consideration of geometric factors, for b ∈ [1/2, 1), n ≥ 1 and w ∈ E1 ∪ E2, the two inequalities
|w − 2−nbi |≥ 3/4 and |bi − 2−nw |≥

√
3b/2 hold. Hence,

|ε(t)| ≤
16
15

∞∑
k=1

(k + 1)
(4
3

)k+2(
2b sin(

β

2
)
)k
+

1
3

∞∑
k=1

(k + 1)
(2√3

3b

)k+2(
2b sin(

β

2
)
)k
.

By sin β = t/2, it is easy to check that sin(β/2) =
√

1 −
√

1 − t2/4
/√

2 < t/3 for small t > 0. This
shows that we can find constants C2 > 0 and δ > 0 such that

|ε(t)| ≤ C2t, 0 < t ≤ δ. (3.6)

From (3.4)–(3.6), we know that

|g′(e−iφ)| ≥ 2(2−α)N(|H3(bi)| −C2t) −C1

≥ 2(2−α)N |H3(bi)| −C,

where C is a positive constant. This implies that, for 0 < t ≤ δ, we have

(C + |g′(e−iφ)|)
1

2−α ≥ 2N |H3(bi)|
1

2−α . (3.7)

Let the positive integer N0 satisfy 2−N ≤ δ for all N ≥ N0. Note that φ′(t) ≥ c1 > 0 for 0 < t ≤ δ.
According to (3.7), we obtain∫ φ(2−N )

φ(2−N−1)
(C + |g′(e−iφ)|)

1
2−α dφ ≥ 2N

∫ φ(2−N )

φ(2−N−1)
|H3(bi)|

1
2−α dφ

≥ c12N
∫ 2−N

2−N−1
|H3(2Nti)|

1
2−α dt

= c1

∫ 1

1/2
|H3(xi)|

1
2−α dx

:= c2.
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We can check that H3(z) is non-constant analytic in | arg z| < 5π/6. This gives c2 > 0 . Noting that
φ(2−N−1)→ 0+ as N → ∞, we have∫ φ(2−N0 )

0
(C + |g′(e−iφ)|)

1
2−α dφ =

+∞∑
N=N0

∫ φ(2−N )

φ(2−N−1)
(C + |g′(e−iφ)|)

1
2−α dφ = +∞.

By using (a + b)p
≤ 2p(ap + bp) for a > 0, b > 0 and p > 0, we have∫ φ(2−N0 )

0
|g′(e−iφ)|

1
2−α dφ = +∞,

which implies that g′(z) < Hp for p ≥ 1/(2 − α).
□

4. Multiplier property of F(1
z ) on |z| < 1

In this section , we consider the multiplier property of g(z). Let Λ denote the set of complex-valued
Borel measures on T = {z : |z| = 1}, let kλ(z) = (1 − z)−λ for λ > 0, and kλ(z) = log 1

1−z + 1 for λ = 0.
Here, we choose the branch of kλ(z) which equals 1 when z = 0. Let Fλ denote the family of functions
h for which there exists µ ∈ Λ such that

h(z) =
∫
T

kλ(ζz)dµ(ζ), |z| < 1. (4.1)

Each Fλ is a Banach space with respect to the norm defined by

∥ h ∥Fλ= inf{∥ µ ∥: µ ∈ Λ such that (4.1) holds},

where ∥ µ ∥ denotes the total variation of the measure µ. The spaces Fλ were introduced in [17,18],
and some roperties of functions in Fλ were obtained in [19,20].

An analytic function υ(z) in D is called a multiplier of Fλ provided that υ(z)h(z) ∈ Fλ for all h ∈ Fλ.
LetMλ denote the set of all multipliers ofFλ.Mλ is a Banach space with respect to the norm defined by

∥ υ ∥Mλ
= sup{∥ υh ∥Fλ: h ∈ Fλ, ∥ h ∥Fλ≤ 1}.

The familyMλ has been studied in [19–21]. In this section, we will consider the multiplier property
of g(z) = F(1/z) with respect to Fλ.

Theorem 4.1. For each β ≥ 0, g(z) ∈ Mβ. For any small ε > 0, g′(z) ∈ F2−α+ε and g′(z) < F2−α−ε,
where α is the Hausdorff dimension of K.

Proof. Since g′ ∈ Hp for some p > 1, we have g ∈ Mβ for each β ≥ 0 by Theorem 3.1 in [21, p. 621].
It follows from the remark of Theorem 3.1 that g′′(z) ∈ H1/(3−α) ⊂ H1/(3−α+ε). Together with Theorem 3
in [17, p. 116], we see that H1/p ⊂ Fp for p ≥ 1. Hence, g′′ ∈ F3−α+ε. Note that f ∈ Fλ if and
only if f ′ ∈ Fλ+1 [17, p. 112]. Consequently g′(z) ∈ F2−α+ε follows. From [7, p. 70], we obtain that
g(z) = z +

∑∞
n=1 a3n+1z3n+1 for |z| < 1, and c1n−α ≤ a3n+1 ≤ c2n−α for n ≥ 1, with constants c1 > 0 and

c2 > 0. Assume that g′(z) ∈ F2−α−ε. Since every complex measure on T is of bounded variation, it
follows easily that there exists some constant c > 0 such that |(3n + 1)a3n+1| ≤ cn1−α−ε, n ≥ 1. This is a
contradiction. Then, the result follows. □
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In view of Theorem 4.1, an interesting question is to determine if g′(z) ∈ F2−α, which is equivalent
to ([17, p. 115]).

h(z) =
∞∑

n=0

n + 1
dn(2 − α)

∫
K
ωndHα(ω)zn ∈ F1, (4.2)

where dn(λ) = Γ(n+λ)
Γ(n+1)Γ(λ) is defined by (1 − x)−λ =

∑∞
n=0 dn(λ)xn. It follows from Stirling’s formula that

dn(λ)(n + 1)1−λ = Γ(λ)−1 + c(λ)(n + 1)−1 + O((n + 1)−2). Then,

n + 1
dn(2 − α)dn(α + 1)

=
(n + 1)1−α(n + 1)α

dn(2 − α)dn(α + 1)
= c0 +

c1

n + 1
+ cn,

where |cn| ≤ C(n + 1)−2. If we substitute this into (4.2), then we have

h(z) = c0

∫
K

dHα(ω)
(1 − zω)α+1 + c1

∞∑
n=0

dn(α + 1)
n + 1

∫
K
ωndHα(ω)zn +

∞∑
n=0

cndn(α + 1)
∫

K
ωndHα(ω)zn

:= c0h1(z) + c1h2(z) + h3(z).

Since |dn(α + 1)
∫

K
ωndHα(ω)| ≤ C by [7], it follows that h2(z) ∈ H2 and h3(z) ∈ H∞, which imply

c1h2(z) + h3(z) ∈ F1 as H∞ ⊂ H2 ⊂ H1 ⊂ F1. Consequently,

g′(z) ∈ F2−α ⇐⇒ h1(z) =
∫

K

dHα(ω)
(1 − zω)α+1 ∈ F1. (4.3)

In view of (4.3), by [18], we know that g′(z) ∈ F2−α if and only if
∫ z

0
h1(t)dt ∈ F0. This leads us to

consider

fε(z) =
∫

K

dHα(ω)
(1 − ωz)α−ε

, |z| < 1. (4.4)

Theorem 4.2. fε ∈ Mβ for each β ≥ 0 if ε > 0, and f0(z) <Mβ for each β ≥ 0.

Proof. For the first assertion, we only need to show f ′ε(z) ∈ Hp for some p > 1 by Theorem 3.1 in [21,
p. 621]. Noting that (1 − x)−λ =

∑∞
n=0 dn(λ)xn for |x| < 1, it follows easily by the Hölder inequality that

1
2π

∫ 2π

0
| f ′ε(reiθ)|pdθ ≤

1
2π

∫ 2π

0

( ∫
K

|ω|

|1 − reiθω|(α+1−ε) dHα(ω)
)p

dθ

≤ C
∫

K

1
2π

∫ 2π

0

dθ
|1 − reiθω|p(α+1−ε) dHα(ω)

= C
∫

K

1
2π

∫ 2π

0
|

∞∑
n=0

dn(
p
2

(α + 1 − ε))rneinθωn|2dθdHα(ω)

= C
∞∑

n=0

d2
n(

p
2

(α + 1 − ε))
∫

K
|ω|2ndHα(ω)r2n.
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It follows from Proposition 4.2 in [7] that
∫

K
|ω|ndHα(ω) ≤ Cn−α. Combining this with dn(λ) ∼

Γ(λ)−1nλ−1(n→ ∞), we get that

1
2π

∫ 2π

0
| f ′ε(reiθ)|pdθ ≤ C

∞∑
n=1

np(α+1−ε)−2−αr2n.

Notice that p(α+1−ε)−2−α→ −ε−1 as p→ 1, we can choose p > 1 such that p(α+1−ε)−2−α <
−1 − ε/2. Hence, f ′ε ∈ Hp for p > 1.

For the second assertion, it is sufficient to prove that f0(z) is unbounded in D. By Theorem 5.2
in [7], we get that

∫
K
ωndHα(ω) = 0 for n , 3k, and there exists some constant c1 > 0 such that∫

K
ω3kdHα(ω) ≥ c1k−α for all k ≥ 1. Note that dn(α) ≥ c2nα−1 for some constant c2 > 0 and all n ≥ 1.

It follows that there exists some constant c3 > 0 such that

f0(x) =
∞∑

n=0

dn(α)
∫

K
ωndHα(ω)xn

= 1 +
∞∑

n=1

d3n(α)
∫

K
ω3ndHα(ω)x3n

≥ c3

∞∑
n=1

x3n

n
→ ∞, x→ 1−.

□

Although we can not prove f0(z) =
∫ z

0
h1(t)dt ∈ F0(or g′(z) ∈ F2−α), yet we can prove f0(z) ∈

BMOA, which consists of all functions f ∈ H1 satisfying

∥ f ∥BMOA= sup
I⊂T

1
|I|

∫
I
| f (ζ) − fI ||dζ | < ∞,

where the supremum is taken over all arcs I ⊂ T with |I| =
∫

I
|dζ | and fI = |I|−1

∫
I

f (ζ)|dζ |. It should be
noted that F0 ⊂ BMOA ⊂ Hp for all p > 0 [21, p. 617].

Theorem 4.3. f0(z) ∈ BMOA.

Proof. We first prove that there exists some positive constant C such that

| f ′0(z)| ≤
C

|1 − z3|
, |z| < 1. (4.5)

It is equivalent to prove that p(z) := (1 − z3) f ′0(z) is bounded for |z| < 1. It is easy check that p(z)
is continue on {z : |z| ≤ 1/2}. Hence, max|z|≤1/2 |p(z)| < ∞. Next, we prove p(z) is bounded for 1/2 <
|z| < 1. Let Ω = {reiθ : 1/2 < r < 1, −π/3 ≤ θ ≤ 0}. For z ∈ Ω, let d = dist(z−1,K). Obviously, d > 0
as 1 < |z|−1 < 2. Noting that p(e2πi/3z) = p(z), |p(z̄)| = |p(z)|, and we can check that there exists some
positive constant C1 such that

| f ′0(z)| ≤ C1

∫
K

dHα(ω)
| 1z − ω|

α+1
≤

C1

d
.
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With consideration of geometry, we find that there exists some constant C2 > 0 such that
d = dist(z−1,K) ≥ C2|1 − z| for z ∈ Ω. Hence,

|p(z)| ≤ C1C−1
2 |1 − z3||1 − z|−1 ≤ C3, z ∈ Ω.

Note that |p(e2πi/3z)| = |p(z)|, |p(z̄)| = |p(z)|. We obtain that p(z) is bounded for 1/2 < |z| < 1, and (4.5)
follows.

It is known that an analytic function ψ(z) on D belongs to BMOA if and only
if |ψ′(z)|2(1 − |z|2)dxdy/π is a Carleson measure [22, p. 240]. By using (4.5), we have
| f ′0(z)| ≤ C|1 − z3|−1. Hence, for any small sector S h(θ0) = {reiθ : 1 − h ≤ r < 1, |θ − θ0| ≤ h},

sup
h>0

1
h

∫
S h(θ0)
| f ′0(z)|2(1 − |z|2)

dxdy
π
≤ C sup

h>0

1
h

∫
S h(0)

1 − |z|2

|1 − z3|2
dxdy ≤ C′.

This shows that | f ′0(z)|2(1 − |z|2)dxdy/π is a Carleson measure, and the result follows. □
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