期刊论文详细信息
| STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:129 |
| Displacement exponent for loop-erased random walk on the Sierpinski gasket | |
| Article | |
| Hattori, Kumiko1  | |
| [1] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan | |
| 关键词: Loop-erased random walk; Displacement exponent; Growth exponent; Law of the iterated logarithm; Sierpinski gasket; Fractal; | |
| DOI : 10.1016/j.spa.2018.11.021 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We prove that loop-erased random walks on the finite pre-Sierpinski gaskets can be extended to a loop-erased random walk on the infinite pre-Sierpinski gasket by using the 'erasing-larger-loops-first' method, and obtain the asymptotic behavior of the walk as the number of steps increases, in particular, the displacement exponent and a law of the iterated logarithm. (C) 2018 Published by Elsevier B.V.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_spa_2018_11_021.pdf | 471KB |
PDF