期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:129
Displacement exponent for loop-erased random walk on the Sierpinski gasket
Article
Hattori, Kumiko1 
[1] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan
关键词: Loop-erased random walk;    Displacement exponent;    Growth exponent;    Law of the iterated logarithm;    Sierpinski gasket;    Fractal;   
DOI  :  10.1016/j.spa.2018.11.021
来源: Elsevier
PDF
【 摘 要 】

We prove that loop-erased random walks on the finite pre-Sierpinski gaskets can be extended to a loop-erased random walk on the infinite pre-Sierpinski gasket by using the 'erasing-larger-loops-first' method, and obtain the asymptotic behavior of the walk as the number of steps increases, in particular, the displacement exponent and a law of the iterated logarithm. (C) 2018 Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2018_11_021.pdf 471KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次