期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:428 |
Critical groups at zero and multiple solutions for a quasilinear elliptic equation | |
Article | |
Sun, Mingzheng1  Zhang, Meiling1  Su, Jiabao2  | |
[1] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China | |
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China | |
关键词: Quasilinear elliptic equations; Resonant; Morse theory; | |
DOI : 10.1016/j.jmaa.2015.03.033 | |
来源: Elsevier | |
【 摘 要 】
In this paper, by Morse theory we will compute the critical groups at zero for a functional I : W-0(1,p)(Omega) -> R defined by setting I(u) = 1/p integral(Omega)vertical bar del u vertical bar(p)dx+1/2 integral(Omega)vertical bar del u vertical bar(2)dx- integral F-Omega(x,u)dx, where p> 2, Omega is a bounded domain in R-N, F(x,u) = integral(u)(0) f(x,t)dt and we assume that f is resonant at zero for the spectrum of -Delta in W-0(1,2)(Omega). As an application of these critical groups estimates, some multiplicity results are also given. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2015_03_033.pdf | 303KB | download |