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Critical groups at zero and multiple solutions
for a quasilinear elliptic equation

Mingzheng Suna∗ Jiabao Sub Meiling Zhanga

aCollege of Sciences, North China University of Technology, 100144, Beijing, China

bSchool of Mathematical Sciences, Capital Normal University, 100048, Beijing, China

Abstract

In this paper, by Morse theory we will compute the critical groups
at zero for a functional I : W 1,p

0 (Ω) → R defined by setting

I(u) =
1

p

∫
Ω
|∇u|pdx+

1

2

∫
Ω
|∇u|2dx−

∫
Ω
F (x, u)dx,

where p > 2, Ω is a bounded domain in R
N , F (x, u) =

∫ u
0 f(x, t)dt and

we assume that f is resonant at zero for the spectrum of −Δ in W 1,2
0 (Ω).

As an application of this critical groups estimates, some multiplicity
results are also given.

Keywords: Quasilinear elliptic equations; Resonant; Morse theory
MR(2010) Subject Classification: 35J92, 35J35, 35B34

1 Introduction

Let Ω be a bounded domain in R
N (N ≥ 1) with smooth boundary ∂Ω. We

study the quasilinear elliptic problem{
−Δpu−Δu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

∗Corresponding author. Phone: +86 13811722895. Fax: +86 01088803275. E-mail
addresses: suncut@163.com (M. Sun), sujb@cnu.edu.cn (J. Su).
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where 2 < p < ∞, Δp denotes the p-Laplacian operator defined by Δpu =
div(|∇u|p−2∇u). This equation arises naturally in various contexts of physics,
we refer to [2, 3] for details and further references.

In this paper, we assume that

(f0) f ∈ C1(Ω× R,R) with f(x, 0) = 0, and satisfies the following condition:

|f ′(x, u)| ≤ c(1 + |u|q−2), ∀ u ∈ R, x ∈ Ω,

for some constants c > 0 and q ∈ [2, p∗), where p∗ = Np/(N − p) if p < N and
p∗ = +∞ if N ≤ p, then it is well known that the weak solutions of equation
(1.1) correspond to the critical points of the C2 functional I : W 1,p

0 (Ω) → R

defined by

I(u) =
1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, u)dx,

where F (x, u) =
∫ u

0
f(x, t)dt, and W 1,p

0 (Ω) is the Sobolev space endowed with
the norm

‖u‖ = ‖∇u‖p = (

∫
Ω

|∇u|pdx)1/p.

In what follows, we denote by 0 < λ1 < λ2 ≤ λ3 ≤ · · · the eigenvalues of
−Δ in W 1,2

0 (Ω), and let μ1 be the first eigenvalue of −Δp in W 1,p
0 (Ω) (see [25]).

In recent years, there are a lot of literatures studying the existence of
solutions for (1.1). For example, using the following conditions

λm < f ′(x, 0) < λm+1, x ∈ Ω,

and
F (x, u) <

μ1

p
|u|p + C, x ∈ Ω, u ∈ R,

where m ≥ 1 and C > 0, the paper [6] proves that (1.1) has at least two
nontrivial solutions by an extension of three critical point theorem. For the
case of (1.1) with right-hand side having p-linear growth at infinity, i.e.,

lim
|u|→∞

f(x, u)

|u|p−2u
= λ �∈ σ(−Δp),

where σ(−Δp) is the spectrum of −Δp in W 1,p
0 (Ω), the paper [10] gets the ex-

istence of one nontrivial solution. In the papers [15, 29], the authors study the
problem (1.1) with concave and convex nonlinearities, and obtain the existence
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and multiple solutions. In [30], the existence of nodal solution to a quasilinear
problem with (p, q)-Laplacian and reaction term that makes coercive the cor-
responding energy functional is investigated via variational methods besides
truncation techniques.

The main aim of this paper is to give some results on the critical groups
of an isolated critical point of I and its applications to the existence and
multiplicity of solutions of (1.1) by Morse theory. Therefore, we need the
following notions (see [7, 28]). Let u0 be an isolated critical point of I with
I(u0) = c ∈ R, and U be an isolated neighborhood of u0, the group

C∗(I, u0) = H∗(Ic ∩ U, Ic ∩ U \ {u0}), ∗ = 0, 1, 2, · · ·
is called the ∗-th critical group of I at u0, where I

c = {u ∈ W 1,p
0 (Ω) : I(u) ≤ c},

andH∗(·, ·) are the singular relative homological groups with a coefficient group
F. It follows from the excision property of the homology groups that the critical
groups are independent of the choices of U , hence they are well defined.

Now, let us recall some results of the critical groups estimates of an iso-
lated critical point u0 for the functional I. Using a finite dimension reduction
procedure, the authors in [8, 9] prove that if I ′′(u0) is injective, then the Morse
index μ of u0 is finite and

C∗(I, u0) = δ∗,μF,

where μ is defined as the supremum of the dimensions of the subspaces of
W 1,p

0 (Ω) on which I ′′(u0) is negative definite. Moreover, in the case in which
I ′′(u0) is not injective, they have proved that the number of nontrivial critical
groups of I in u0 is finite, and the same result for 1 < p < 2 can be found
in [23]. For other qualitative results of the critical groups for the p-Laplacian
equations, we refer to [11, 13] for details and further references. For the case
of u0 = 0, the author of [32] assumes that there exist α > 0 and m ≥ 1 such
that

1

2
λmu

2 < F (x, u) ≤ 1

2
λm+1u

2, for x ∈ Ω, 0 < |u| ≤ α,

and proves that the functional I has a local linking at 0 and

Cdm(I, 0) �= 0,

here and in the sequel, we assume that

dm = dim{⊕i≤mker(−Δ− λi)}.
Motivated by [9, 33], combining the minimax methods and Morse theory, we

want to compute exactly the critical groups at zero for the resonant quasilinear
elliptic equation (1.1). More specifically, we make the following assumptions:
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(f1) there exist α > 0 and m ≥ 1 such that

f ′(x, 0) = λm, F (x, u) ≤ 1

2
λmu

2, for |u| ≤ α, x ∈ Ω,

(f1)
′ there exist α > 0 and m ≥ 1 such that

f ′(x, 0) = λm, F (x, u) ≥ 1

2
λmu

2 + C|u|θ, for |u| ≤ α, x ∈ Ω,

where C > 0 and 2 < θ < p.

Without loss of generality, we can assume that u = 0 is an isolated critical
point of equation (1.1). Our first result in this paper reads as follows.

Theorem 1.1. Assume 2 < p < ∞ and (f0) holds.

(i) If (f1) holds, then
C∗(I, 0) = δ∗,dm−1F.

(ii) If (f1)
′ holds, then

C∗(I, 0) = δ∗,dmF.

Remark 1. (1) Assume that f(x, u) = λmu + |u|θ−1 with 2 < θ < p, we know
that (f1)

′ is satisfied, but from [8] or [9, Lemma 2.2], we know that I ′′(0) is
not injective, then our result is new.

(2) Note that for the semilinear elliptic equation, i.e., p = 2, this result is
due to the paper [33], now we can generalize the same result to the quasilinear
equation (1.1) with p > 2. However, in our theorem there are many difficulties
to get the critical group estimates for the functional I. For example, the
space W 1,p

0 (Ω) with p > 2 is not a Hilbert space, then we can not get a space
decomposition according to the eigenfunctions which is the basis of linking
theorem; Moreover, the second derivative of I in each critical point is not a
Fredholm operator from W 1,p

0 (Ω) to its dual space, so that the generalized
Morse splitting lemma does not work. In spite of these difficulties, using the
results in [9, 33] we are able to compute the critical groups at zero for the
functional I.

As a byproduct of Theorem 1.1 we also obtain some multiplicity results.
Before stating the results, let us recall the following notions. Let ϕ1 > 0 be
the eigenfunction of μ1, and μ2 = inf{λ ∈ σ(−Δp) : λ > μ1}. If we assume
V1 = span{ϕ1}, and denote by

V ⊥
1 = {u ∈ W 1,p

0 (Ω) :

∫
Ω

(ϕ1)
p−1udx = 0},

4



then we have
W 1,p

0 (Ω) = V1 ⊕ V ⊥
1 . (1.2)

From [21], we know that there exists μ1 < μ < μ2 such that∫
Ω

|∇u|pdx ≥ μ

∫
Ω

|u|pdx, for any u ∈ V ⊥
1 . (1.3)

Moreover, we make the following assumptions:

(f2) there exist M > 0 and λ < λ1

2
such that

F (x, u)− 1

p
μ1|u|p ≤ λ|u|2, for |u| ≥ M, x ∈ Ω,

(f3) there exists μ1 < η < μ such that

lim
|u|→∞

f(x, u)

|u|p−2u
= η, for x ∈ Ω,

and our results read as follows.

Theorem 1.2. Assume 2 < p < ∞. If (f0) and (f2) hold, then equation (1.1)
has at least four nontrivial solutions in each of the following cases:

(i) (f1) holds with m ≥ 3;

(ii) (f1)
′ holds with m ≥ 2.

Theorem 1.3. Assume 2 < p < ∞. If (f0) and (f3) hold, then equation (1.1)
has at least one nontrivial solution in each of the following cases:

(i) (f1) holds with m �= 2;

(ii) (f1)
′ holds with m �= 1.

The proofs of our theorems are based on the critical groups estimates both
at zero and at infinity for the functional I. By condition (f2), we will prove
that the functional I is coercive on W 1,p

0 (Ω), and note that for the p-Laplacian
operator, using the condition

lim
|u|→∞

(F (x, u)− 1

p
μ1|u|p) = −∞, x ∈ Ω, (1.4)
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the paper [24] also get the same result. Obviously, because of the existence of
Laplacian operator, we only need (f2) which is weaker than (1.4). For other
results of the p-Laplacian equation we refer to [5, 12, 16, 17, 22] and references
therein.

This paper is organized as follows. In Section 2, some preliminaries on
Morse theory are given. The proofs of Theorem 1.1–1.3 are given in Sections
3–5, respectively. In the sequel, the letter C will be used indiscriminately to
denote a suitable positive constant whose value may change from line to line.

2 Preliminaries

In this paper, we will apply the minimax methods and the Morse theory to
prove our theorem. Therefore, we recall some notions and results (see e.g.,
[7]). Let E be a real Banach space and Φ ∈ C1(E,R).

Definition 2.1. The functional Φ is said to satisfy Palais-Smale (for short
(PS)) condition if every sequence {un} ⊂ E with

Φ(un) being bounded, Φ′(un) → 0, as n → ∞, (2.1)

possesses a convergent subsequence.

Let K = {u ∈ E : Φ′(u) = 0}, for a < inf Φ(K), the ∗-th critical group of
Φ at infinity is defined by

C∗(Φ,∞) = H∗(E,Φa), ∗ = 0, 1, 2, · · · .

If we denote

P (u, t) =
∑
i

rankC∗(Φ, u)ti, P (∞, t) =
∑
i

rankC∗(Φ,∞)ti,

then the Morse inequality for the functional Φ is as follows: there is a polyno-
mial Q(t) with nonnegative integer as its coefficients such that∑

uj∈K
P (uj, t) = P (∞, t) + (1 + t)Q(t). (2.2)

We also need the following critical point theorems.
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Proposition 2.2. ([26]) Assume that Φ satisfies (PS) condition, Φ(0) = 0
and Φ has a local linking at 0 with respect to E = V ⊕ W , i.e., there exists
ρ > 0 such that

Φ(u) ≤ 0, u ∈ V, ‖u‖ ≤ ρ; Φ(u) > 0, u ∈ W, 0 < ‖u‖ ≤ ρ,

then Ck(Φ, 0) �= 0, where k = dim(V ) < ∞.

Proposition 2.3. ([4]) Assume that E = H− ⊕H+ and Φ satisfies the (PS)
condition. If Φ is bounded from below on H+ and Φ(u) → −∞ as ‖u‖ → ∞
with u ∈ H−, then Cd(Φ,∞) �= 0, where d = dim(H−) < ∞. Moreover, there
exists a solution u0 such that Cd(Φ, u0) �= 0.

Next, we recall some results in [8, 9]. We assume that (f0) holds and u0

is an isolated critical point of the functional I. Since p > 2, the second order
differential of I in u0 is given by

〈I ′′(u0)v, w〉 =
∫
Ω

(1 + |∇u0|p−2)(∇v|∇w)dx

+

∫
Ω

(p− 2)|∇u0|p−4(∇u0|∇v)(∇u0|∇w)dx

−
∫
Ω

f ′(x, u0)vwdx,

(2.3)

for any v, w ∈ W 1,p
0 (Ω), where 〈·, ·〉 denotes the duality pairing, and (·|·) de-

notes the scalar product in R
N .

Since u0 ∈ C1(Ω), we have

b(x) = |∇u0|(p−4)/2∇u0 ∈ L∞(Ω).

Let Hu0 be the closure of C∞
0 (Ω) under the scalar product

(v, w)u0 =

∫
Ω

[(1 + |b|2)(∇v|∇w) + (p− 2)(b|∇v)(b|∇w)]dx,

then Hu0 is isomorphic to W 1,2
0 (Ω), and for u0 = 0 we get that Hu0 = W 1,2

0 (Ω).
Since p > 2, W 1,p

0 (Ω) ⊂ Hu0 continuously. Using (f0), I
′′(u0) can be extended

to a Fredholm operator Lu0 : Hu0 → H∗
u0

defined by setting

〈Lu0v, w〉 = (v, w)u0 −
∫
Ω

f ′(x, u0)vwdx, (2.4)
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for any v, w ∈ Hu0 . So we can consider the natural splitting Hu0 = H− ⊕
H0 ⊕H+, where H−, H0, H+ are, respectively, the negative, null, and positive
spaces, according to the spectral decomposition of Lu0 in L2(Ω), and H−, H0

have finite dimensions. From standard regularity theory (see [19]),

H− ⊕H0 ⊂ W 1,p
0 (Ω) ∩ L∞(Ω).

If we set W = H+ ∩W 1,p
0 (Ω) and V = H− ⊕H0, then we get the splitting

W 1,p
0 (Ω) = V ⊕W. (2.5)

Lemma 2.4. (Lemma 4.6 of [8]) There exist r ∈ (0, δ) and ρ ∈ (0, r) such that
for any v ∈ V ∩ Bρ(0) there exists one and only one w ∈ W ∩Br(0) ∩ L∞(Ω)
such that for any z ∈ W ∩ Br(0) we have

f(v + w + u0) ≤ f(v + z + u0).

Moreover w is the only element of W ∩ Br(0) such that

〈f ′(u0 + v + w), z〉 = 0 ∀ z ∈ W.

So we can introduce the map ψ : V ∩Bρ(0) → W ∩Br(0) defined by ψ(v) =
w and the function ϕ : V ∩ Bρ(0) → R defined by ϕ(v) = I(u0 + v + ψ(v)),
which is a continuous map by [8]. Moreover, we have that

Lemma 2.5. ([9, Lemma 2.2]) For any v ∈ V ∩ Bρ(0), z ∈ V, w ∈ V , we
have

ψ ∈ C1(Ω), ψ(0) = 0, ψ′(0) = 0,

〈ϕ′(v), z〉 = 〈I ′(u0 + v + ψ(v)), z〉,
〈ϕ′′(v)z, w〉 = 〈I ′′(u0 + v + ψ(v))(z + ψ′(v)(z)), w〉. (2.6)

Lemma 2.6. ([8, p. 286]) If (f0) holds, then

C∗(I, u0) = C∗(ϕ, 0), ∗ = 0, 1, 2, · · · .

3 Critical groups at zero

Without loss of generality, we can assume that u0 = 0 is an isolated critical
point of equation (1.1). First, using (f1) we will show that the functional I has
a local linking at 0, and for the similar results with p = 2 we refer to [26, 27]
for details and further references.
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Lemma 3.1. If (f0) and (f1) hold, then we have

Cdm−1(I, 0) �= 0. (3.1)

Proof. We set
H1 = ⊕i≤m−1ker(−Δ− λi),

H2 = ⊕j≥mker(−Δ− λj),

and W1 = H2∩W 1,p
0 (Ω). Since p > 2, the standard regularity theory (see [19])

gives
H1 ⊂ W 1,p

0 (Ω) ∩ L∞(Ω),

then we get the splitting

W 1,p
0 (Ω) = H1 ⊕W1.

We first prove that there exists ρ > 0 such that{
I(u) ≤ 0, for u ∈ H1, ‖u‖ ≤ ρ,

I(u) > 0, for u ∈ W1, 0 < ‖u‖ ≤ ρ.

(1) Let ε > 0 such that λm−1 < λm − ε. By (f0) and (f1), there exists
p < γ < p∗ such that

F (x, u) ≥ 1

2
(λm − ε)u2 − C|u|γ , ∀ u ∈ R, x ∈ Ω,

this together with the fact that H1 is a finite dimensional space gives

I(u) =
1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, u)dx

≤ C‖u‖p + λm−1

2

∫
Ω

|u|2dx− 1

2
(λm − ε)

∫
Ω

|u|2dx+ C‖u‖γ

≤ C‖u‖p − C‖u‖2 + C‖u‖γ ,

then using p > 2 there exists ρ > 0 such that I(u) ≤ 0 as ‖u‖ ≤ ρ.
(2) By conditions (f0) and (f1), there exists p < ν < p∗ such that

F (x, u) ≤ 1

2
λmu

2 + C|u|ν , ∀ u ∈ R, x ∈ Ω,
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then for u ∈ W1 we have

I(u) =
1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, u)dx

≥ 1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx− 1

2

∫
Ω

λmu
2dx− C

∫
Ω

|u|νdx

≥ 1

p
‖u‖p − C‖u‖ν ,

which implies that there exists ρ > 0 such that I(u) > 0 as 0 < ‖u‖ ≤ ρ.
Now using the results in Proposition 2.2, we complete the lemma.

Proof of (i) in Theorem 1.1: Using (f1) and (2.3), in the particular case
u0 = 0, we have

〈I ′′(0)v, w〉 =
∫
Ω

(∇v|∇w)dx−
∫
Ω

f ′(x, 0)vwdx

=

∫
Ω

(∇v|∇w)dx− λm

∫
Ω

vwdx,

(3.2)

where v, w ∈ W 1,p
0 (Ω).

Therefore, the Fredholm operator L0 : H0 → H∗
0 in (2.4) is defined as

〈L0v, w〉 = (v, w)0 −
∫
Ω

f ′(x, 0)vwdx

=

∫
Ω

(∇v|∇w)dx− λm

∫
Ω

vwdx,

(3.3)

where v, w ∈ H0 = W 1,2
0 (Ω). Now, we consider the natural splitting

W 1,2
0 (Ω) = H− ⊕H0 ⊕H+,

which H−, H0, H+ are, respectively, the negative, null, and positive spaces,
according to the spectral decomposition of L0 in L2(Ω). Obviously, by (3.3)
we know that

H− = ⊕i≤m−1ker(−Δ− λi), H0 = ker(−Δ− λm), (3.4)

and
H+ = ⊕j≥m+1ker(−Δ− λj),

Moreover, H−, H0 have finite dimensions.
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Since p > 2, W 1,p
0 (Ω) ⊂ W 1,2

0 (Ω) continuously. Similar to (2.5), if we define

V = H− ⊕H0, W = H+ ∩W 1,p
0 (Ω),

then we get the splitting
W 1,p

0 (Ω) = V ⊕W. (3.5)

Now, using Lemma 2.5 we know that

ϕ : (H− ⊕H0) ∩Bρ(0) → R

is a C2 function. Moreover, for any z, w ∈ H−⊕H0, by (2.6) and (3.2) we have

〈ϕ′′(0)z, w〉 = 〈I ′′(0)z, w〉
=

∫
Ω

(∇v|∇w)dx−
∫
Ω

f ′(x, 0)vwdx

=

∫
Ω

(∇v|∇w)dx− λm

∫
Ω

vwdx,

then ϕ′′(0) is a Fredholm operator with kernel H0. Meanwhile, Lemma 2.6
implies that

C∗(I, 0) = C∗(ϕ, 0), ∗ = 0, 1, 2, · · · . (3.6)

Next, for the rest of the proof, we follow the methods in [33]. From the
Shifting theorem (see [7]), there exist a ball B centered at 0, and a C1 map
h : B ∩H0 → H− such that

C∗(ϕ, 0) = C∗−dm−1(ϕ̃, 0), ∗ = 0, 1, 2, · · · , (3.7)

where ϕ̃(u) = ϕ(u+ h(u)) for any u ∈ H0, and dm−1 = dim(H−).
By (3.7) and Lemma 3.1 we get

C0(ϕ̃, 0) = Cdm−1(I, 0) �= 0,

which is equivalent to 0 being an isolated local minimum of ϕ̃, so

C∗(ϕ̃, 0) = δ∗,0F,

this together with (3.6) and (3.7) gives

C∗(I, 0) = δ∗,dm−1F.

The proof is completed.
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Next, we give the proof of (f1)
′.

Lemma 3.2. If (f0) and (f1)
′ hold, then by (3.4) we have

Cdm(I, 0) �= 0, where dm = dim(H− ⊕H0). (3.8)

Proof. Similar to Lemma 3.1 above, we only need to prove that there exists
ρ > 0 such that {

I(u) ≤ 0, for u ∈ H− ⊕H0, ‖u‖ ≤ ρ,

I(u) > 0, for u ∈ W, 0 < ‖u‖ ≤ ρ.

(1) By (f0) and (f1)
′, there exists p < γ < p∗ such that

F (x, u) ≥ 1

2
λmu

2 + C|u|θ − C|u|γ, ∀ u ∈ R, x ∈ Ω. (3.9)

For u ∈ H− ⊕H0 which is a finite dimensional space, (3.9) implies that

I(u) =
1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, u)dx

≤ 1

p

∫
Ω

|∇u|pdx− C

∫
Ω

(|u|θ − |u|γ)dx
≤ C‖u‖p − C‖u‖θ + C‖u‖γ ,

then using 2 < θ < p < γ < p∗ there exists ρ > 0 such that I(u) ≤ 0 as
‖u‖ ≤ ρ.

(2) By the conditions (f0) and (f1)
′, for ε > 0 satisfying λm+1 > λm + ε,

there is p < ν < p∗ such that

F (x, u) ≤ 1

2
(λm + ε)u2 + C|u|ν , ∀ u ∈ R, x ∈ Ω,

which implies that, for u ∈ W,

I(u) =
1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, u)dx

≥ 1

p

∫
Ω

|∇u|pdx+
λm+1

2

∫
Ω

u2dx− λm + ε

2

∫
Ω

u2dx− C

∫
Ω

|u|νdx

≥ 1

p
‖u‖p − C‖u‖ν ,

then there exists ρ > 0 such that I(u) > 0 as 0 < ‖u‖ ≤ ρ. We complete the
lemma.

12



Proof of (ii) in Theorem 1.1: Set d0 = dim(H0). Similar to (3.6) and
(3.7), we have

C∗(I, 0) = C∗(ϕ, 0) = C∗−(dm−d0)(ϕ̃, 0), ∗ = 0, 1, 2, · · · . (3.10)

By Lemma 3.2 we get
Cd0(ϕ̃, 0) �= 0,

which is equivalent to 0 being an isolated local maxmum of ϕ̃, so

C∗(ϕ̃, 0)= δ∗,d0F,

this together with (3.10) gives

C∗(I, 0) = δ∗,dmF.

The proof is completed.

4 Proof of Theorem 1.2

Let

f±(x, t) =

{
f(x, t) ±t ≥ 0

0 ±t < 0,

and

I±(u) =
1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F±(x, u)dx,

where F±(x, u) =
∫ u

0
f±(x, s)ds. It is well known that the critical points of I±

are exactly the weak solutions of equation (1.1) (cf. [14]).

Lemma 4.1. If (f0) and (f2) hold, then
(1) I and I± are coercive on W 1,p

0 (Ω),
(2) I and I± satisfy the (PS) condition.

Proof. (1) For the functional I, by contradiction, we assume that there is a
sequence {un} ⊂ W 1,p

0 (Ω) such that

I(un) ≤ C, as ‖un‖ → ∞. (4.1)

If we set vn = un

‖un‖ , then ‖vn‖ = 1 and there is a v0 ∈ W 1,p
0 (Ω) such that⎧⎪⎨⎪⎩

vn ⇀ v0, weakly in W 1,p
0 (Ω),

vn → v0, strongly in Lp(Ω),

vn(x) → v0(x), a.e. x ∈ Ω.

(4.2)
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From the condition (f2), we get

F (x, u)− 1

p
μ1|u|p ≤ λ|u|2 + C, for u ∈ R, x ∈ Ω, (4.3)

this together with (4.1) gives

C

‖un‖p ≥ I(un)

‖un‖p ≥ 1

p

∫
Ω

(|∇vn|p − μ1|vn|p)dx− C + C‖un‖2
‖un‖p ,

then by 2 < p we obtain

lim sup
n→∞

∫
Ω

|∇vn|pdx ≤ μ1

∫
Ω

|v0|pdx.

On the other hand, we get that

μ1

∫
Ω

|v0|pdx ≤
∫
Ω

|∇v0|pdx ≤ lim inf
n→∞

∫
Ω

|∇vn|pdx,

which implies that∫
Ω

|∇v0|pdx = μ1

∫
Ω

|v0|pdx, and vn → v0 in W 1,p
0 (Ω).

Then we get ‖v0‖ = 1, and by (4.2) we have

|un(x)| → +∞, a.e. x ∈ Ω. (4.4)

Using the Fatou lemma, (4.3) and (4.4) give

I(un) ≥ 1

2

∫
Ω

|∇un|2dx−
∫
Ω

(F (x, un)− μ1

p
|un|p)dx

≥ λ1

2

∫
Ω

|un|2dx− λ

∫
Ω

|un|2dx− C

→ +∞, as n → ∞,

this is a contradiction. The case of I+ (I−) is similar.
(2) The (PS) condition follows from the Theorem 3 in [6].

Lemma 4.2. Let e1 > 0 be the eigenfunction associated with λ1. If (f1) (or
(f1)

′) holds, then there exists t > 0 such that I±(±te1) < 0.
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Proof. By (f1), for ε > 0 small there exists p < ν ≤ p∗ such that

F (x, u) ≥ 1

2
(λm − ε)u2 − C|u|ν , ∀ u ∈ R, x ∈ Ω.

Then by m ≥ 3, we get

I+(te1) =
|t|p
p

∫
Ω

|∇e1|pdx+
λ1|t|2
2

∫
Ω

|e1|2dx

− (λm − ε)t2

2

∫
Ω

|e1|2dx+ C|t|ν
∫
Ω

|e1|νdx
≤ C|t|p − C|t|2 + C|t|ν ,
< 0, as t > 0 small.

The other cases are similar.

Proof of Theorem 1.2. Since the functional I, I± are coercive on W 1,p
0 (Ω),

Lemma 4.1 implies that
C∗(I,∞) = δ∗,0F. (4.5)

Using Lemma 4.2, the functional I has a positive critical point u1 and a neg-
ative critical point u2 which are all at negative energy such that

C∗(I, u1) = C∗(I, u2) = δ∗,0F. (4.6)

Using the Mountain pass lemma in [1], we know that equation has a solution
u3 such that (see [7])

C1(I, u3) �= 0.

The next claim can be found in [31, p. 412], and for the reader’s convenience
we sketch a proof of it.

Claim :
C∗(I, u3) = δ∗,1F. (4.7)

Using (2.4), for the isolated critical point u3 we can define V = H−⊕H0 ⊂
Hu3 , and Lemma 2.6 implies that there exists

ϕ : V ∩Bρ(0) → R

such that
C∗(I, u3) = C∗(ϕ, 0), ∗ = 0, 1, 2, · · · , (4.8)

and
C1(ϕ, 0) = C1(I, u3) �= 0. (4.9)
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Set m =dimH− and n =dimH0, we know that m ≤ 1.
If n = 0, then 0 is a nondegenerate critical point of ϕ (see [7]), and

C∗(ϕ, 0) = δ∗,mF,

which implies that (4.7) holds.
If n �= 0, then 0 is a degenerate critical point of ϕ, and from the Shifting

theorem (see [7]), we have

C∗(ϕ, 0) = C∗−m(ϕ̃, 0), ∗ = 0, 1, 2, · · · , (4.10)

where ϕ̃(u) = ϕ|H0 .
Case A. If m = 1, then C0(ϕ̃, 0) �= 0, which is equivalent to 0 being an

isolated local minimum of ϕ̃, so

C∗(ϕ̃, 0) = δ∗,0F,

then (4.7) holds.
Case B. If m = 0, then (4.10) implies that

C∗(ϕ, 0) = C∗(ϕ̃, 0), ∗ = 0, 1, 2, · · · . (4.11)

Next, we show n = 1. For kerϕ′′(0) to be nontrivial it amounts to saying that
1 is the first eigenvalue of the following linear eigenvalue problem

−div((1 + |b|2)∇u+ (p− 2)(b,∇u)RN b) = λf ′(x, u3)u, in Ω, u|∂Ω = 0.

From [18] or [20, Sect. 6.1], this first eigenvalue is simple, then n = 1, which
implies that

C∗(I, u3) = C∗(ϕ, 0) = C∗(ϕ̃, 0) = δ∗,1F.

Moreover, using (f1) with m ≥ 3 or (f1)
′ with m ≥ 2, Theorem 1.1 gives

that there exists d ≥ 2 such that

C∗(I, 0) = δ∗,dF,

which implies that u3 �= 0.
Now, Morse inequality (2.2) for I gives that

(−1)d + (−1)0 + (−1)0 + (−1)1 = (−1)0,

this is a contradiction. So equation (1.1) has at least four nontrivial solutions.
The proof is completed.
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5 Proof of Theorem 1.3

Now, we give the proof of Theorem 1.3. First we deduce by standard arguments
that the functional satisfies the (PS) condition (cf. [9]).

Lemma 5.1. If (f0) and (f3) hold, then I satisfies the (PS) condition.

Proof. Using (f0), we need only to prove that if there is a sequence {un} ⊂
W 1,p

0 (Ω) satisfying (2.1), then {un} is bounded in W 1,p
0 (Ω). Arguing by con-

tradiction, we assume ‖un‖ → ∞ as n → ∞. Let zn = un

‖un‖ , then there exists

z ∈ W 1,p
0 (Ω) such that, passing if necessary to a subsequence,⎧⎪⎨⎪⎩

zn ⇀ z weakly in W 1,p
0 (Ω),

zn → z strongly in Lp(Ω),

zn → z a.e. x ∈ Ω.

For any v ∈ W 1,p
0 (Ω), from (2.1) we have∫

Ω

|∇un|p−2∇un∇vdx+

∫
Ω

∇un∇vdx−
∫
Ω

f(x, un)vdx = o(1)‖un‖. (5.1)

Now dividing (5.1) by ‖un‖p−1, and then taking v = zn − z, we derive by
the assumption (f3) that

lim
n→∞

∫
Ω

|∇zn|p−2∇zn∇(zn − z)dx = 0,

then from the fact that −Δp is of type S
+ (see [14]), we conclude that zn → z

in W 1,p
0 (Ω) with ‖z‖ = 1.

Moreover, dividing (5.1) by ‖un‖p−1, from (f3) we infer that

−Δpz = η|z|p−2z, z ∈ W 1,p
0 (Ω). (5.2)

Using μ1 < η < μ, equation (5.2) has zero as the only solution, thus we
conclude z = 0, which is a contradiction. The proof is completed.

Lemma 5.2. If (f0) and (f3) hold, then form (1.2) we have
(1) I(u) → −∞, as u ∈ V1 and ‖u‖ → ∞,
(2) I(u) → +∞, as u ∈ V ⊥

1 and ‖u‖ → ∞.
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Proof. (1) Using (f0) and (f3), for ε > 0 small we have

F (x, u) ≥ μ1 + ε

p
|u|p − C, ∀ u ∈ R, x ∈ Ω,

which implies that

I(u) =
1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, u)dx

≤ 1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx− μ1 + ε

p

∫
Ω

|u|pdx+ C

≤ 1

p
(1− μ1 + ε

μ1

)‖u‖p + C‖u‖2 + C

→ −∞, as ‖u‖ → ∞.

(2) Similarly, for ε > 0 small we have

F (x, u) ≤ μ− ε

p
|u|p + C, ∀ u ∈ R, x ∈ Ω,

then by (1.3) it implies that

I(u) =
1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, u)dx

≥ 1

p

∫
Ω

|∇u|pdx+
1

2

∫
Ω

|∇u|2dx− μ− ε

p

∫
Ω

|u|pdx− C

≥ 1

p
(1− μ− ε

μ
)‖u‖p − C, ,

then I(u) → +∞, as ‖u‖ → ∞. The proof is completed.

Proof of Theorem 1.3. From Lemma 5.1, we know that I satisfies the (PS)
condition, and using Lemma 5.2 and Proposition 2.3, we get that there exists
a solution u0 of equation (1.1) such that

C1(I, u0) �= 0.

Using (f1) with m �= 2 or (f1)
′ with m �= 1, Theorem 1.1 gives that

C∗(I, 0) = δ∗,dF, where d �= 1,

which implies that equation (1.1) has at least one nontrivial solution u0. The
proof is completed.

Acknowledgements
The authors would like to thank the referee for many valuable discussions

and suggestions. This paper is supported by the BNSF (1132012) and NSFC
(61272026,11271264, 11301010).

18



References

[1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical
points theory and applications, J. Funct. Anal. 14 (1973) 349–381.

[2] V. Benci, D. Fortunato, L. Pisani, Soliton-like solutions of a Lorentz in-
variant equation in dimension 3, Math. Phys. 3 (1998) 315–344.

[3] V. Benci, P. D’Avenia, D. Fortunato, L. Pisani, Solitons in several space
dimensions: a Derrick’s problem and infinitely many solutions, Arch. Rat.
Mech. Anal. 154 (2000) 297–324.

[4] T. Bartsch, S.-J. Li, Critical point theory for asymptotically quadratic
functionals and applications to problems with resonance, Nonlinear Anal.
28 (1997) 419–441.

[5] T. Bartsch, Z.-L. Liu, T. Weth, Nodal solutions of a p-Laplacian equation,
Proc. London. Math. Soc. 91 (2005) 129–152.

[6] K.-C. Chang, Morse theory on Banach space and its applications to partial
differential equations, Chinese Ann. Math. Ser. B 4 (1983) 381–399.

[7] K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution
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[17] J.M. do Ó, Existence of solutions for quasilinear elliptic equations, J.
Math. Anal. Appl. 207 (1997) 104–126.

[18] D. de Figueiredo, Positive solutions of semilinear elliptic problems, In:
Differential Equations, Sao Paulo, 1981. Lecture Notes in Math., vol. 957,
pp. 34–87. Springer, Berlin, 1982.

[19] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equation of Sec-
ond Order, Springer-Verlag, Berlin, 1998.

[20] L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman,
Hall/CRC, Boca Raton, 2006.

[21] G.L. Garza, A.J. Rumbos, Existence and multiplicity for a resonance
problem for the p-Laplacian on bounded domain in R

N , Nonlinear Anal.
70 (2009) 1193–1208.

[22] M.-Y. Jiang, Critical groups and multiple solutions of the p-Laplacian
equations, Nonlinear Anal. 59 (2004) 1221–1241.

[23] M.-Y. Jiang, M. Sun, Some qualitative results of the critical groups for
the p-Laplacian equations, Nonlinear Anal. 75 (2012) 1778–1786.

[24] Q.-S. Jiu, J. Su, Existence and multiplicity results for Dirichlet problems
with p-Laplacian, J. Math. Anal. Appl. 281 (2003) 587–601.

[25] P. Lindqvist, On the equation div(|∇u|p−2∇u)+λ|u|p−2u = 0, Proc. Amer.
Math. Soc. 109 (1990) 157–164.

20



[26] J.-Q. Liu, A Morse index for a saddle point, Systems Sci. Math. Sci. 2
(1989) 32–39.

[27] S.-J. Li, M. Willem, Applications of local linking to critical point theory,
J. Math. Anal. Appl. 189 (1995) 6–32.

[28] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems,
Springer, Berlin, 1989.

[29] E. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear
elliptic problem via the cohomological index, Nonlinear Anal. 71 (2009)
3654–3660.

[30] S.A. Marano, N.S. Papageorgiou, Constant-sign and nodal solutions of
coercive (p, q)-Laplacian problems, Nonlinear Anal. 77 (2013) 118–129.
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