期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:127 |
Equidistribution of Hecke eigenforms on the Hilbert modular varieties | |
Article | |
Liu, Sheng-Chi | |
关键词: Hilbert modular form; Hecke eigenform; Bergman Kernel; | |
DOI : 10.1016/j.jnt.2007.01.006 | |
来源: Elsevier | |
【 摘 要 】
Let F be a totally real number field with ring of integers O, and let Gamma = SL(2, O) be the Hilbert modular group. Given the orthonormal basis of Hecke eigenforms in S-2k (Gamma), one can associate a probability measure d mu(k) on the Hilbert modular variety Gamma\H-n. We prove that d mu(k) tends to the invariant measure on Gamma\H-n weakly as k ->infinity. This generalizes Luo's result [W. Luo, Equidistribution of Hecke eigenforms on the modular surface, Proc. Amer. Math. Soc. 131 (2003) 21-27] for the case F = Q. (C) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2007_01_006.pdf | 132KB | download |