期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:132 |
Siegel modular forms of degree two attached to Hilbert modular forms | |
Article | |
Johnson-Leung, Jennifer1  Roberts, Brooks1  | |
[1] Univ Idaho, Dept Math, Moscow, ID 83843 USA | |
关键词: Hilbert modular form; Siegel modular form; Hecke eigenvalues; Epsilon factors; Paramodular newform; | |
DOI : 10.1016/j.jnt.2011.08.004 | |
来源: Elsevier | |
【 摘 要 】
Let E/Q be a real quadratic field and pi(0) a cuspidal, irreducible, automorphic representation of GL(2, A(E)) with trivial central character and infinity type (2,2n + 2) for some non-negative integer n. We show that there exists a non-zero Siegel paramodular newform F: h(2) -> C with weight, level. Hecke eigenvalues, epsilon factor and L-function determined explicitly by pi(0). We tabulate these invariants in terms of those of pi(0) for every prime p of Q. (C) 2011 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2011_08_004.pdf | 276KB | download |