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Abstract

Let F be a totally real number field with ring of integers O, and let I" = SL(2, O) be the Hilbert modular
group. Given the orthonormal basis of Hecke eigenforms in Sy, (I”), one can associate a probability measure
d i on the Hilbert modular variety I"\H". We prove that du; tends to the invariant measure on I"\H"
weakly as k — oo. This generalizes Luo’s result [W. Luo, Equidistribution of Hecke eigenforms on the
modular surface, Proc. Amer. Math. Soc. 131 (2003) 21-27] for the case F = Q.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let F be a totally real number field of degree n over Q with ring of integers O and
01,02, ...,0, be all the real embeddings of F. Let I" = SL(2, O) be the Hilbert modular group
which acts discontinuously on the product of n upper half planes H" in the following way: For

y:(‘C’S)eF,andz=(z1,...,zn)eH”,wedeﬁneyz=(y1z1,...,ynzn)where
oi(a) oi(b) oi(a@)z; + o () .
= Lo = T (<),
l (‘Ti(c) 0i(d)> . oi(c)zi +oi(d) (Isism

Remark. We may also identify I" with its image in SL(2,R)" viay € I', ¥y = (Y1, ..., Yn) €
SL(2,R)".
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It is well known that I" has finite co-volume (see [Fr)), i.e.

dxdy

vol(IM\H") = )2 < 00,

[\H"

where z = (x{+iy1, ..., xp+iyy) e H",dx =dx;---dx,,dy =dy;---dy,,and Ny = y; - - - yy,.
Denote by Sy (I") (k € N, k > 2) the space of Hilbert modular cusp forms of weight
(2k, ..., 2k), i.e. the space of holomorphic functions f(z) on H" such that

(1) fory = (410) €T, f(y2) = N(cz+d)* f(2), where for z = (z1, ..., z,) € H",

n

N(cz+d)= H(Gi (©)zi + 01 (d)),

i=1
(2) f(z) vanishes at all the cusps of I" (see [Ga] or [Fr]).

Let

B 1 dxdy
~ vol(IM\H") (Ny)?'

dp
For f and g in Sy; (I"), we define the (normalized) Petersson inner product by

(f.8) = / f@g@Ny)*du.

T\H"

It is well known that Sy (") is a finite dimensional Hilbert space. Furthermore, if we let
Jr = dimg Sox(I'), then it was shown by Shimizu [Sh] (using the Selberg trace formula) that

_ vol(I'\H")

oy 2k — 1" + 0(1) (1.1)

as k — oo.
One expects the following mass equidistribution conjecture on the Hilbert modular variety
I'\H" should be true:

lim max
k—o0 1<i<Jy

/(Ny)2k|ﬁ,k(z)|2du—/du‘ =0 (1.2)
A

where A C I'\H" is compact and { fl-,k}l.J" | is the orthonormal Hecke basis of Sy (I"). Forn =1

(i.e. I' = I'(1)), this is an analogue of quantum unique ergodicity conjecture, formulated by
Rudnick and Sarnak [RS].

This conjecture is still out of reach at the present. However, Luo [Lu] established this con-
jecture on the average and Lau [La] generalized Luo’s result to the arithmetic surface IjH(N)\H.
The purpose of this paper is to generalize Luo’s and Lau’s results to the Hilbert modular varieties
(Theorem 1 and Corollary 2).
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Let { fi,k},‘li | be an orthonormal basis of Sy (I7). Set

3
1 2
due =7 (Z|fi,k(1)| )(Ny)z"du-
i=I
Theorem 1. For any compact subset A C I'\H" and any 0 < € < 1, we have

/duk:/d,u—l— Oc,a((k1F4)")

as k — oo.

Remark 1. The key ingredients in [Lu] and [La] are the Bergman kernel for the Hecke operator
and the Petersson trace formula, respectively. Our approach is using the Bergman kernel on
r\H".

Remark 2. Luo [Lu] proved a uniform result for all measurable subsets A. In our Theorem 1,
the result depends on the compact subset A. But our decay rate is sharper than in [Lu].

Some properties of I'.  We say that an element y (# identity) of I is elliptic (respectively
parabolic and hyperbolic) if all the y; are elliptic (respectively parabolic and hyperbolic) in the
usual sense (see [Iw]). If y (5 identity) is not of above types, we say that y is mixed. A point z
in H" is called an elliptic point if it is fixed by an elliptic element in I". A point « in R” (where
R =RU {oo}) is called a cusp if it is fixed by a parabolic element in I".

Proposition 1. (See [Sh, Theorem 6].) The number of the I -inequivalent elliptic points of I is
finite.

Proposition 2. (See [Sh, Lemma 15].) Let ey, ...,es € H" be a complete representatives of
I'-inequivalent elliptic points of I'. Then the union of I';; \ {1} (1 <i <) forms a complete rep-

resentatives of non-conjugate elliptic elements in I", where I,, ={y € I': ye; = ¢;} (1 <i <s).

Since I, is a discrete subgroup of a compact subgroup, I, is a finite subgroup. Hence we
have

Lemma 1. There are only finitely many elliptic conjugacy classes in I.
2. Bergman kernel

ForkeN,k>2andz = (z1,...,2,), w = (W, ..., w,) € H*, we define the Bergman kernel
by

Bi(z,w)= Y N(yz—w) *j(y,0*
yel’

where N (yz — ) =[[i_,(0i(¥)zi — ;) and j(y,2) = N(cz +d), y = (¢ Z)'
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Proposition 3.

(1) Bi(z, w) converges absolutely and uniformly for (z, w) in compact subsets of H" x H".
(2) For each fixed w € H", By (z, w) € Sor(I") (as a function of z).

Proof. The proof can be found in [Ga, 1.14] or [Fr, Chapter II]. O

Proposition 4. If f € Sy, (I"), then

2k — 1\" (2i)%kn
f(w)=< )(’) /f(z)Bk(z I

4 (Ny )2
\H"
2k —1\" (2i)%n
= ( - ) ( ’; vol (M\H")( £, Bi (-, w))
where 7z = (x1 +iy1,...,Xn +iy,) € H*, w € H".
Proof. See [Ga, 1.14] or [Fr, Chapter II]. O
For convenience, denote by
2k — 1\" (2i)%kn
cl= 1(M\H" 2.1
k<4n)2V°(\) @D

and note that Cy, = C; when k > 2.
ForkeN,y el and z=(zy,...,2,) € H", let

hy,2) =N@Ez—2>N(yz—22j(y, 072
and
h(r,2)=(h(y,2) =N =D*Nyz—2 "y, *

Lemma 2. |hi(y,2)| < 1 for all z €e 0" and y € I'. Moreover, |hi(y,z)| =1 if and only if
y ==x1 or y is elliptic and z is its fixed point.

Proof. It suffices to prove when n = 1. By definition,

z—7 1|

vi—z cz+d

[y, 2)| =

where y = (‘;3) el . Letyz=7 =x"+iy and z=x +iy. Then

-z 1 _ y1/2 y 1/2
yz—Zz cz+d| |W0HGRD ez +df?
1
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120172 120172
:}yﬂ/(y) _ <2 Viy)) <1
y S x—x y
| 55+ i =

The equality holds if and only if x = x" and y = y’, i.e. yz = z. Hence the equality holds if and
only if y = =1 or y is elliptic and z is its fixed point. O

Lemma 3. For each fixed k > 2, Zye rhi(y, z) converges absolutely and uniformly on any
compact subset of H".

Proof. Note that

Y iy, ) =Nz =™ Bi(z,2) (2.2)
yel’

and then the result follows from Proposition 3. O
Lemma 4. For any M € I', we have
he(M~'y M, 2) = hi(y, M2).
Proof. By a simple computation or see [Fr]. O
3. Proof of Theorem 1

Before we prove the theorem, we make the following observation.
Since By (z, w) is a cusp form in z (by Proposition 3), we have

Ji
Bi(zow) =Y (BeC.w), fix) fix(@)
i=1
Ji
=Cx Z fik(w) fix(z) (by Proposition 4).

i=1

Let w = z, then we obtain the identity

Jk
Bi(z.2)=Ci Y | i@,

i=1

(3.1)

where Cy, is defined in (2.1).

Proof of Theorem 1. Let x4(z) denote the characteristic function of A on I"\H". One can
extend it (with the same notation) to H" as a I"-invariant function.
By (3.1) and (2.2),
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1
dpur = —— [ Bi(z,2)(Ny)*d
/Mk 7iCr (2, 2D)(Ny)" du
A A

1
~ Q¥ Cy / xa@) Y iy, D du

M\H» yel

1
[Z /XA(Z)hk()/aZ)d,Uv

= 2i 2knJ C
i) Ji Cy y=H

+ Y xa@hi(y,2)du
yel, yis elliptic \Hr

+ / XA(Z)( > hk(%Z)> du]

\H" yel', y#=xl1, y is not elliptic

We estimate the above three summation of integrals in the following cases.
Case 1. y ==1.

/XA(Z)hk(V,Z)dM= / xA(@)dp = p(A).

T\H" T\H"
Case 2. For y € I' elliptic, let
I'y={Mecrl: My =yM} (the centralizer of y in I")
and
yl={M'yM: MerI}.
Also let A be a set of complete representatives of elliptic conjugate classes in I".

Remark. |A| < oo by Lemma 1.

> Xa@Qh(y, du=>Y" > / Xa@h(y', 2)dp

yerl, yis elliptic \H? yeA y’ely] \Hr

=) > f xa@h (M~ y M. z)dp.

yeA Mel\I' \H"

Using Lemma 4 and unfolding, we have

> f Xa@h(M~'y M, z)dp = f Xa@hi(y,2)dp
Mel\I' H L A\H?
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1 /
=— [ xa@hi(y,2)dpn
|FV|H,,

1 n
ZW/XA(Z)Hhk,i(Vi,Zi)dM

—1 ! - dx; dy;
ST Yol ONED hy i (Vi 2
| ,,IVO](F\H”)H/ ki (Vi 2i) 2
= H

1

where

hei(Vinzi) = @ — ) iz — 207 j (i z) 7.

Remark. /i ; (M~ 'y; M, z;) = hi i (v;, Mz;) for any M € SL(2, R).
Hence we may assume that each y; is of the form

cos6;  sinb;
—sin#; cos6;

), 9,'750,JT.

For convenience, we drop the subscripts i in y;, z;, 6;, etc.
Now we make change of variables by using the Cayley transform

H — D (unit disc)
z—1i
z+i

= w=

and then use the polar coordinates w = pe'? of the unit disc. It yields

2)2/( 2
/|hk,i —4// P 2|2kpdpd<p
H

(1 _ t)Zk—Z
=4 md[ (Whereﬂ:ZO;ﬁO, 27T)

e When 0 <t <k~ !¢ (0 <€ < 1), it is easy to see that \1:’%1\ < 1. Hence
k—H—e k—l+e
(1 _ t)2k—2 1—1¢ 2k—1 1
————dt = / . - dt
11— eiPr[2K 11— eiPr| 11— ciPr 2
0

f1+e

1
< —  _dt < ke,
/ TEEVZITEA
0
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e When k7€ < < 1, we have (1-— 1‘)2 1 for k sufficiently large and then W >
2k~ 1,1
= zk +E. So
1—1t 1 _
i — (1+k—l+€) 1/2‘
IT—er] |1+ (1—COS,B)|1/2

(1—- t)z
Hence

o N2k-2
[ O i o 2o

J—1+€

Combining these estimates, we get

2 XA@hi(y. ) dp < (k717)".
yerl, yis elliptic I\H"

Note that here the implicit constant only depends on €.

Case3.Let I =T\ ({1} U {y e I': y is elliptic}).

Since Zyep |h3(y, z)| converges uniformly on A (by Lemma 3) and |k3(y, z)| < 1 for all
z€ A, y € I (by Lemma 2), there exists a constant 0 < A < 1 (dependent on A) such that
|h3(y,z)| <Aforallze A, y € I''. Hence

/ xA<z>(th<y,z>)du /Z|h3<y,z>||h3(y 2|7 du
T\H" yel”’ yel”’

g/ Z|h3(y,z)|,\%du < ()
A velr’

where A1 = ()\)3 < 1.

From Cases 1-3 and using Shimizu’s asymptotic formula (1.1) for Ji, Theorem 1 follows
directly. O
4. Some remarks

Let I be a discrete subgroup of SL(2, R)" with finite co-volume which satisfies the irre-
ducibility condition below and Assumption (F) on its fundamental domain.

Irreducibility condition: The restriction of each of the n projections

pj:SL2,R)" = SL2,R) (1<j<n)

to I is injective.
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Assumption (F): Let «, (1 < v <t) be a set of complete representatives of I -inequivalent
cusp of I". For each v, take a g, € SL(2, R)" such that g,«, = co and put

n
Up=1g, "z [[Im@) >dv. 2= z10-.020)

i=1

where d, is a suitably chosen positive number. Let Iy, ={y € I': y«, =«,} and let V, be a
fundamental domain of I, in U,. Then I" has a fundamental domain F of the form

F=FUViU---UV;

where Fj is relatively compact in H”.

In this case, Shimizu’s dimension formula (1.1) also holds for I" [Sh]. Moreover, our proposi-
tions, lemmas and theorem in previous sections all remain true for I". In particular, for a non-zero
ideal n of O, let

To(n) = {y - (‘C’ Z) e SL(2, O): czOmodulon}.
Then I' = I'y(n) satisfies the irreducible condition and Assumption (F). Hence we have the
following corollary:

Corollary 2. For any compact subset A C In(n)\H" and any 0 < € < 1, we have
/ dig = / dit+ Oc s ((K15)")
A A

as k — oo.

Remark. Again the decay rate here is sharper than in [La], but the implicit constant depends on
the compact subset A. In [La], the result is uniform.
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