期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:107
On a theorem of Levinson
Article
Ki, H
关键词: Lindelof hypothesis;    Riemann hypothesis;    Riemann zeta function;   
DOI  :  10.1016/j.jnt.2004.04.003
来源: Elsevier
PDF
【 摘 要 】

Levinson investigated the number of real zeros of the real or imaginary part of pi(-sigma/2-it/2)Gamma((sigma)/(2) + (it)/(2))zeta(sigma + it), where sigma>0 and zeta(s) is the Riemann zeta function. By the functional equation, pi(-slambda/2)Gamma((s+lambda)/(2))zeta(s+lambda)+/-pi(-s-lambda/2)Gamma((s-lambda)/(2))zeta(s-lambda) we may assume sigma > (1)/(2). In this paper, we consider pi(-s+lambda/2)Gamma((s+lambda)/(2))zeta(s+lambda)+/-pi(-s-lambda)/(2)Gamma((s-lambda)/(2))zeta(s-lambda) for any complex number s and any lambda > 0, as general forms of the real or imaginary part of the above function, and then we further study the zeros of the functions. (C) 2003 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2004_04_003.pdf 224KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次