JOURNAL OF NUMBER THEORY | 卷:107 |
On a theorem of Levinson | |
Article | |
Ki, H | |
关键词: Lindelof hypothesis; Riemann hypothesis; Riemann zeta function; | |
DOI : 10.1016/j.jnt.2004.04.003 | |
来源: Elsevier | |
【 摘 要 】
Levinson investigated the number of real zeros of the real or imaginary part of pi(-sigma/2-it/2)Gamma((sigma)/(2) + (it)/(2))zeta(sigma + it), where sigma>0 and zeta(s) is the Riemann zeta function. By the functional equation, pi(-slambda/2)Gamma((s+lambda)/(2))zeta(s+lambda)+/-pi(-s-lambda/2)Gamma((s-lambda)/(2))zeta(s-lambda) we may assume sigma > (1)/(2). In this paper, we consider pi(-s+lambda/2)Gamma((s+lambda)/(2))zeta(s+lambda)+/-pi(-s-lambda)/(2)Gamma((s-lambda)/(2))zeta(s-lambda) for any complex number s and any lambda > 0, as general forms of the real or imaginary part of the above function, and then we further study the zeros of the functions. (C) 2003 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2004_04_003.pdf | 224KB | download |