期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:163 |
Joint universality and generalized strong recurrence with rational parameter | |
Article | |
Pankowski, Lukasz1,2  | |
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Umultowska 87, PL-61614 Poznan, Poland | |
[2] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan | |
关键词: Strong recurrence; Self-approximation; Riemann zeta function; Riemann hypothesis; | |
DOI : 10.1016/j.jnt.2015.11.005 | |
来源: Elsevier | |
【 摘 要 】
We prove that, for every rational d not equal 0, +/- 1 and every compact set K subset of {s is an element of C : 1/2 < Re(s) < 1} with connected complement, any analytic non-vanishing functions f(1), f(2) on K can be approximated, uniformly on K, by the shifts zeta(s + i tau) and zeta(s + id tau), respectively. As a consequence we deduce that the set of tau satisfying vertical bar zeta(s + i tau) - zeta (s + id tau)vertical bar < epsilon uniformly on K has a positive lower density for every d not equal 0. (c) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2015_11_005.pdf | 338KB | download |