期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:131
Self-approximation of Dirichlet L-functions
Article
Garunkstis, Ramunas
关键词: Dirichlet L-function;    Self-approximation;    Strong recurrence;   
DOI  :  10.1016/j.jnt.2011.01.013
来源: Elsevier
PDF
【 摘 要 】

Let d be a real number, let s be in a fixed compact set of the strip 1/2 < sigma < 1. and let L(s, chi) be the Dirichlet L-function. The hypothesis is that for any real number d there exist 'many' real numbers tau such that the shifts L(s + i tau, chi) and L(s + id tau, chi) are 'near' each other. If d is an algebraic irrational number then this was obtained by T. Nakamura. L Pankowski solved the case then d is a transcendental number. We prove the case then d not equal 0 is a rational number. If d = 0 then by B. Bagchi we know that the above hypothesis is equivalent to the Riemann hypothesis for the given Dirichlet L-function. We also consider a more general version of the above problem. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2011_01_013.pdf 157KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次