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1. Introduction

Let, as usual, s = o + it denote a complex variable. For o > 1, the Dirichlet L-function is given by

1 0=Y X2

n=1

where x (n) is a Dirichlet character mod q. For g =1 we get L(s, x) = ¢(s), where ¢(s) is the Riemann
zeta-function.

In [6] Bohr proved that if x is a nonprincipal character, then the Riemann hypothesis for L(s, x)
is equivalent to the almost periodicity of L(s, ) in the half plane o > 1/2. A function f(s) is almost
periodic in a region E C C if for any positive ¢ and any compact subset K in E there exists a sequence
of real numbers --- <71 <0< 71Ty < Ty <--- such that
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.. . Tm
liminf(tp+1 — tm) > 0, limsup — < o0
m—+o0 m—+oo M

and

|[f(s+itm)— f(s)| <& forallseKandmeZ

hold. Bohr [6] also obtained that every Dirichlet series is almost-periodic in its half-plane of absolute
convergence. Effective upper bounds for the almost periodicity of Dirichlet series with Euler products
in the half-plane of absolute convergence were considered by Girondo and Steuding [7]. Note that
every Dirichlet L-function is almost periodic in the sense of Besicovitch on any vertical line of the
strip 1/2 < o < 1. For this and related results see Besicovitch [5] and Mauclaire [13,14].

Bagchi [2] proved that the Riemann hypothesis for L(s, x) (x is an arbitrary Dirichlet character) is
true if and only if for any compact subset K of the strip 1/2 <o <1 and for any € > 0

.1 .
11Tr210rcl)f? meas{r €[0,T]: rsrgé(ﬂ(s—i-lt, X)) —LGs, )| < 8} >0, (1)

where meas A stands for the Lebesgue measure of a measurable set A. Bagchi says that the Dirichlet
L-function L(s, x) is strongly recurrent on the strip o9 < o < o7 if (1) is valid for any compact K of
the strip og < o < o1. The strong recurrence is connected with the universality property of Dirichlet
series. More about the universality and the strong recurrence see Bagchi [1-3], and Steuding [17].

There are several unconditional results concerning the self-approximation of Dirichlet L-functions
in the critical strip. Let /C be a compact subset of the strip 1/2 <o <1 and let A € R be such that I
and K +iA:={s+iAr: s K} are disjoint. From Kaczorowski, Laurin¢ikas and Steuding [10] it follows
that for any character y and any ¢ >0

1
liminf meas{r €10. TJ: max|Ls + i +it. ) — Ls +iT. )| < e] ~0.
se

T—o0

Nakamura [15] considered the joint universality of shifted Dirichlet L-functions. His Theorem 1.1 leads
to the following statement. If 1 =d1,d>, ..., dp are algebraic real numbers linearly independent over Q,
then for any Dirichlet character x and any € >0

1
liminf—meas{re 0,T]: max max|L(s+id;t, x)— L(s+idyT, 8} 0. 2
iminf [0.71: max SGK! (s+idjT, x) — L(s +idyT, )| <& > (2)

If m =2 then Pankowski [16] using Six Exponentials Theorem showed that (2) holds for di,d; are
real numbers linearly independent over Q.
We prove the following theorem.

Theorem 1. Let 1 =d1,d>, ..., dy be nonzero algebraic real numbers and let KC be a compact subset of the
strip 1/2 < o < 1. Then for any Dirichlet character y and any ¢ > 0 the inequality (2) is valid.

Note that Theorem 1 remains true if dy,d>, ..., dy are replaced by ddq,dd>, ..., ddy,, where d € R.
The next theorem shows that ‘liminf in the inequality (2) often can be replaced by ‘lim’.

Theorem 2. Let dq,d>, ..., dn be any real numbers, let x1, X2, - - ., xm be any Dirichlet characters, and let K
be a compact subset of the strip 1/2 < o < 1. Then for any & > 0, except an at most countable set of ¢, there
exists a limit

1
lim —meas{re 0,T]: max max|L(s+idit, x;i) — L(s +idyT, 8}.
o [ ] 1< e se)C‘ (s +1id;T, xj) (s +idg Xk)} <

The mentioned results of Nakamura and Pankowski together with Theorem 1 and Theorem 2 lead
to the following corollary.
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Corollary 3. Let d be a nonzero real number and let IC be a compact subset of the strip 1/2 < o < 1. Then for
any Dirichlet character x and any € > 0, except an at most countable set of ¢,

1
lim — meas[t € [0, T]: max|L(s +it, x) — L(s +idT, x)| < 8} > 0. (3)
T—o0 NI
From the proof of Theorem 2 we see that for any real numbers dq,...,dy, and for any Dirichlet
characters xi, ..., xm the function

T)= max max|L(s+id;t, xi) — L(s+idiT,
&(t) 1<j,/<<mseic| (s +idjT, X)) = L(s +idi T, x|

is Besicovitch almost periodic function (for the definition see Section 3 above the proof of Theorem 2).
Let &€ > 0 be such that the limit (3) exists. For such ¢ we define a characteristic function I¢(7), T € R,
by

1, ifg(r)<e,

0, ifg(r)>e. “)

Ie(T) = {

It is known (Jessen and Wintner [9, Section 12]) that I.(t) is Besicovitch almost periodic function
also. Thus we can say that self-approximations of Dirichlet L-functions, considered in this paper, usu-
ally appear in a regular way.

Theorem 1 and Theorem 2 are proved in Section 3. Next we state several lemmas.
2. Lemmas

We start from the following statement.

Lemma 4. Let KC be a compact subset of the rectangle U. Let

d = min min|s — z|.
zedU sek

If f(s) is analytic on U and

/|f(s)]2dadt<e,
U

then

JEIT

rgg;glf(S)I <

Proof. The lemma can be found in Gonek [8, Lemma 2.5]. O

Lemma 5. Let aq, ..., ayn be real numbers linearly independent over the rational numbers. Let y be a region
of the N-dimensional unit cube with volume V (in the Jordan sense). Let I, (T) be the sum of the intervals
betweent = 0 and t = T for which the point (ait, ..., ayt) is mod 1 inside y. Then

1, (T
lim —y( ):
Tooo T

V.

Proof. This is Theorem 1 in Appendix, Section 8, of Voronin and Karatsuba [11]. O
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For a curve w(t) in RN we introduce the notation
{o®} = (01(t) = [w1(®)], ..., on () — [on®D)]).
where [x] denotes the integral part of x € R.

Lemma 6. Suppose that the curve w(t) is uniformly distributed mod 1 in RN. Let D be a closed and Jordan
measurable subregion of the unit cube in RN and let 2 be a family of complex-valued continuous functions
defined on D. If §2 is uniformly bounded and equicontinuous, then

T
1
Tli_)n;()?/f({a)(t)})lp(t)dt:/f(xl,...,xN)dxl...de
0 D

uniformly with respect to f € £2, where 1p(t) is equal to 1 if w(t) € D mod 1, and 0 otherwise.
Proof. The lemma is Theorem 3 in Appendix, Section 8, of Voronin and Karatsuba [11]. O

Lemma 7. Let p, be the nth prime number and 1 =d4, d3, ..., d; be algebraic real numbers which are linearly

independent over Q. Then the set {d) log pn }:éggl is linearly independent over Q.

Proof. This is Proposition 2.2 in Nakamura [15]. The proof is based on Baker’s [4, Theorem 2.4] re-
sult. O

3. Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. We define a truncated Dirichlet L-function

-1
Ly(s, x) = H(l - X;ﬁ”) )

pLv

Roughly speaking, we first prove Theorem 1 for the truncated Dirichlet L-function and later we show
that the tail is small.

Let {d1,d>,...,d;} be a maximal linearly independent (over Q) subset of the set {dq,d>,...,dn}.
Then there are integers a # 0 and a1, dx 2, - - -, Gk such that

1
die = (@1d1 + Qeady + -+ @gdp) forl <k<m. )
Let

A= max {lag 1]+ lag 2l + -+ + lagl ).

<k<m

Denote by ||x|| the minimal distance of x € R to an integer. If

thn logp

H<6 forp<vand1<<n<l, (6)
2ma

then
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dnl
Hr "2;ng<a8 forp<vand1<n<l

and, by the relation (5),

di1
HT%H <A8 forp<vandl<k<m.

By this and by the continuity of the function L, (s, x) we have that for any € > 0 there is § > 0 such
that for 7 satisfying (6)

max max[logL (s+idyt, x) —logLy (s +idat, x)| <e. (7)
1<k,n<m sek

For positive numbers 8, v, and T we define the set

dnlogp
2ma

ST:ST(S,V):{I: Tel0,T], Hr H <8, p<v, 1<n<l}. (8)

Let U be an open bounded rectangle with vertices on the lines ¢ =07 and 0 = 0;, where 1/2 <07 <
07 < 1, such that the set K is in U. Let y > v. We have

//Z|logLy(s+zdkt x) —logLy (s +idgT, X)| do dtdt
k=1

m
1
= E /?/|logLy(s+idkt,x) —IOgLv(S-l-idkT,X)|2dfd<7df-
k=1

For the inner integrals of the right-hand side of the last equality we will apply Lemma 6. Let p, be
the nth prime number. There are indexes M and N such that py < v < pmy1 and py < y < pn+1- By
generalized Kronecker’s theorem (Lemma 5) and by Lemma 7 the curve

dilog pn \ <<
w(T)=T——
2ma 1<n<N

is uniformly distributed mod 1 in R'N. Let R’ be a subregion of the IN-dimensional unit cube defined
by inequalities

lYenll <8 for1<k<land1<n<M

and

1
3 fori<k<land M+1<n<N.

1
Yikn — 5 <

Let R be a subregion of the IM-dimensional unit cube defined by inequalities

lyinll <8 for1<k<land1<n<M.
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Clearly
meas R’ = meas R = (26)'M.

Note that

. . L .
logLy(s +idgt, x) —logLy (s +idgT, ) :logL—y(s~|—1dkt, X)
v

X (p)
== Z 10g<1_ s+1dkr) Z ij](erzdkr)

v<p<y v<p<y j=1

< x'(pn)
Z Z X(sﬁdkt) (9)

M<ngN j=1J

Thus in view of the linear dependence (5) we get

log—(s—i—ldkr X) dr

llm—/z

k=1

I

1
ZT‘L‘EJ/(Z
St

k=1

2

L
log —y(s +idgtT, x)
Ly

m

+ 2

k=141

L i
log il <S + a(amdl +agdy + -+ adpT, X>

v

2
)dr.

By Lemma 6 and equality (9) we obtain that the last limit is equal to

Z Z X](p)efzﬂl]aykn

M<n<N j=1 ]pn

v i xI(p)e

M<n<N j=1 JPn

>y K T

M<n<N j=1 Jpn

[

k=1

.. 2
m 27ij(ak,1Y1.n+ak2Y2.0++0k 1 Y10)
+ 2

k=I+1

)d)’m ...dyiN

I

:meast...j(Z

k=1

2mija 2
](p)e JaYk,n

. y 5
= Xj(p)eznl](a’ﬁlJ’1.n+ak,2J’z.n+~-+ak,1ylyn)
DY -

M<ng<N j=1 JPn

£y

k=I+1

=mmeasR Z Z 210 <<measRZ 2

v<p<y j= 1 P>V

)dyl,M+1 cdyrn
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Consequently
1 - , , 2 1
T Z|logLy(s +idt, x) —logLy (s + idgt, )| do dtdt <« measR Z 2 (10)
s U k=1 p>v
Again, by generalized Kronecker’s theorem (Lemma 5),
o1
lim — meas St = measR. (11)
T—oo T

By (10) and (11), for large v, as T — oo, we have

m
meas:r: TesST, /Z
U k=1

L
log X (s +idxt, x)
Ly

2
1 1
dodt < E W}>§TmeaSR.

p>v

Then Lemma 4 gives

2 1
1 1 4 1
dt<—< —) ]>—TmeasR
E 5 )
d/m el 1 2

where d = minzcyy mingec |s — z|. By the continuity of the logarithm we obtain that for any € > 0
there is v = v(¢) such that for any y > v

m
L
meas{7: T € ST, ma log -2 (s idy T,
{ T se;é(E gLv(+ kTs X)

k=1

m
1
meas{t: T € Sr, maxZ|Ly(s+idkt, x) — Ly (s +idyT, X)|2d1' <ey>—-TmeasR. (12)
sekC pa 2

Now we will prove that for any § > 0 there is y = y(§) such that
m
meas{r: 7€[0,T), m%xZ}L(s—i- idgT, x) — Ly (s +idyt, X)|2dt < 8} >1-=8T. (13)
NS
k=1
The last formula together with (7), (8) and (12) yields Theorem 1. We return to the proof of (13). By

the mean value theorem of the Dirichlet L-function (Steuding [17, Corollary 6.11]) and by Carlson’s
theorem (Titchmarsh [18, Chapter 9.51]) we obtain

T
.1 . . 2 W]
TIEEOT[“(S'HXT’X)_LY(S'HXT’X)! drzz o
0 n>y
where x is fixed. Thus (13) follows in view of
[ x|
. . 2
//Z|L(s+zdkr,x)—Ly(s—i-zdkr,x)| do dtdt <<Z o
o U k=1 n>y

Theorem 1 is proved. O

The proof of Theorem 2 is based on the ideas of Mauclaire [13,14]. It uses the theory of Besicovitch
almost periodic functions. We recall related definitions.
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Let

P(1)= Zane”’”,

neF
where F is a finite set, A, are any real numbers, and the coefficients a, are any complex numbers.
For real T we say that P(t) is a trigonometric polynomial.

A function f:R — C is called uniformly almost periodic (U.A.P.) if given any ¢ > 0, there exists
a trigonometric polynomial P(t) such that

sup|f (1) — P(1)| <e.
TeR

A function f:R — C is called B? almost periodic (B1.A.P.), ¢ > 1, if given any & > 0, there exists
a trigonometric polynomial P(t) such that

T
1
limsupﬁ |f(x) - P(0)|"dT <. (14)

T—o00
—-T

If g =1 then we write B.A.P. (Besikovitch almost periodic) instead of B'.A.P. For any q > 1 it is
clear that every U.A.P. function is B4.A.P. and that every B1.A.P. function is B.A.P.

Proof of Theorem 2. Let

T)= max max|L(s+id;t, xi) — L(s+idiT,
&(1) léj,kgmse)C‘ (s +1djT, X;) (s +idk Xk)‘

and let
1
Fr(x)= Tmeas{t €[0,T]: g(v) <x}

be a distribution function of g(t). If g(r) is B.A.P. then it is known (see Jessen and Wintner [9,
Theorem 27] or LaurinCikas [12, Theorem 6.3, Chapter 2]) that there is a distribution function F(x)
such that Fr(x) converges weakly to F(x) for T — oo. It means that if F(x) is continuous at x =¢
then

lim Fr(e)

T—o0
exists. Thus to obtain Theorem 2 we need to show that g(t) is B.A.P.

We remark that if a(t) and b(t) are both non-negative B.A.P. functions of t, then t — max(a(t),
b(t)) is also B.A.P. since max(a(t), b(t)) can be written as

1
max(a(), b)) = 5 (|a@® —b®O] + (a® +b®)),
and the modulus of B.A.P. function is again B.A.P. By this we have that g(t) is B.A.P. if the function
f(x)= mé}CX|L(S +idiT, x1) — L(s + id2 7, x2)|
se

is B.A.P. In view of the note below the formula (14) the function f(t) is B.A.P. if there are U.A.P
functions fy(t) such that
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N—+o0 T—+o00

T
lim (lim sup %/U(r)—fl\,(f)fdz):o. (15)
-T

Let

G =3 L

n
n<N

be a partial sum of the Dirichlet series associated with L(s, x). Next we show that the equality (15)
is true with

v = I}gg\LN(s +idiT, x1) — Ln(s + idaT, x2)|.

By repeating the proof of Proposition 12 of Mauclaire [13] we get that fy(t) is U.A.P. for any
dq,d; € R. Note that the case when d; or d; is equal to zero is already included in Proposition 12 of
Mauclaire [13].

Further we have that

L(s+idiT, x1) — L(s +id>27T, x2)
= (L(s+idiT, x1) — Ln(s+id1T, x1) + Ln(s +idaT, x2) — L(s + id2 T, x2))
+ (Ln(s+1id1T, x1) — Ln(s +id2 T, X2)).

and as a consequence, we get that

|f(0) = fn()| <sup|L(s +idiT, x1) — Ln(s +id1T, x1) + Ln(s +id2T, x2) — L(s +ida T, x2)|
sek
<sup|L(s +idiT, x1) — Ln(s +idq T, x1)|
sek

+ sup|Ly(s +idat, x2) — L(s + idaT, x2)|-

sek
Then, in view of the inequality (a + b)? < 2a2 + 2b%, we obtain that

10 1] 2
ﬁflf(r)—fw(r)lzdtgT/(igEIL(SJridmx])—LN(S+idlr,X1)I) dt
—-T

T
1 2
+= /(sup|L(s+id2r,X2) —LN(s+id2r,X2)|) dt.

sek

By Mauclaire [14, Theorem 5.1] we have that, for any real d,

T
1 2
li li idt) — idt dt ] =0.
N—1>Too<lm1iufoo T /(§15111<)|f(s+l )— fn(s+i )|) )

This proves the equality (15) and Theorem 2 O
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From the proof we see that Theorem 2 remains true with Dirichlet L-functions L(s, xj), j =
1,...,m, replaced by any general Dirichlet series satisfying conditions of Theorem 5.1 of Mau-
claire [14].

Remark. The ‘liminf" version of Corollary 3 is independently obtained by Takashi Nakamura in “The
generalized strong recurrence for nonzero rational parameters”, Arch. Math. 95 (2010) 549-555.
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