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Let d be a real number, let s be in a fixed compact set of the
strip 1/2 < σ < 1, and let L(s,χ) be the Dirichlet L-function. The
hypothesis is that for any real number d there exist ‘many’ real
numbers τ such that the shifts L(s + iτ ,χ) and L(s + idτ ,χ) are
‘near’ each other. If d is an algebraic irrational number then this
was obtained by T. Nakamura. Ł. Pańkowski solved the case then
d is a transcendental number. We prove the case then d �= 0 is
a rational number. If d = 0 then by B. Bagchi we know that the
above hypothesis is equivalent to the Riemann hypothesis for the
given Dirichlet L-function. We also consider a more general version
of the above problem.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let, as usual, s = σ + it denote a complex variable. For σ > 1, the Dirichlet L-function is given by

L(s,χ) =
∞∑

n=1

χ(n)

ns
,

where χ(n) is a Dirichlet character mod q. For q = 1 we get L(s,χ) = ζ(s), where ζ(s) is the Riemann
zeta-function.

In [6] Bohr proved that if χ is a nonprincipal character, then the Riemann hypothesis for L(s,χ)

is equivalent to the almost periodicity of L(s,χ) in the half plane σ > 1/2. A function f (s) is almost
periodic in a region E ⊂ C if for any positive ε and any compact subset K in E there exists a sequence
of real numbers · · · < τ−1 < 0 < τ1 < τ2 < · · · such that

E-mail address: ramunas.garunkstis@mif.vu.lt.
URL: http://www.mif.vu.lt/~garunkstis.

1 Supported by grant No. MIP-94 from the Research Council of Lithuania.
0022-314X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2011.01.013

http://dx.doi.org/10.1016/j.jnt.2011.01.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:ramunas.garunkstis@mif.vu.lt
http://www.mif.vu.lt/~garunkstis
http://dx.doi.org/10.1016/j.jnt.2011.01.013


R. Garunkštis / Journal of Number Theory 131 (2011) 1286–1295 1287
lim inf
m→±∞(τm+1 − τm) > 0, lim sup

m→±∞
τm

m
< ∞

and ∣∣ f (s + iτm) − f (s)
∣∣ < ε for all s ∈ K and m ∈ Z

hold. Bohr [6] also obtained that every Dirichlet series is almost-periodic in its half-plane of absolute
convergence. Effective upper bounds for the almost periodicity of Dirichlet series with Euler products
in the half-plane of absolute convergence were considered by Girondo and Steuding [7]. Note that
every Dirichlet L-function is almost periodic in the sense of Besicovitch on any vertical line of the
strip 1/2 < σ < 1. For this and related results see Besicovitch [5] and Mauclaire [13,14].

Bagchi [2] proved that the Riemann hypothesis for L(s,χ) (χ is an arbitrary Dirichlet character) is
true if and only if for any compact subset K of the strip 1/2 < σ < 1 and for any ε > 0

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: max

s∈K

∣∣L(s + iτ ,χ) − L(s,χ)
∣∣ < ε

}
> 0, (1)

where meas A stands for the Lebesgue measure of a measurable set A. Bagchi says that the Dirichlet
L-function L(s,χ) is strongly recurrent on the strip σ0 < σ < σ1 if (1) is valid for any compact K of
the strip σ0 < σ < σ1. The strong recurrence is connected with the universality property of Dirichlet
series. More about the universality and the strong recurrence see Bagchi [1–3], and Steuding [17].

There are several unconditional results concerning the self-approximation of Dirichlet L-functions
in the critical strip. Let K be a compact subset of the strip 1/2 < σ < 1 and let λ ∈ R be such that K
and K + iλ := {s + iλ: s ∈ K} are disjoint. From Kaczorowski, Laurinčikas and Steuding [10] it follows
that for any character χ and any ε > 0

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: max

s∈K

∣∣L(s + iλ + iτ ,χ) − L(s + iτ ,χ)
∣∣ < ε

}
> 0.

Nakamura [15] considered the joint universality of shifted Dirichlet L-functions. His Theorem 1.1 leads
to the following statement. If 1 = d1,d2, . . . ,dm are algebraic real numbers linearly independent over Q,
then for any Dirichlet character χ and any ε > 0

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: max

1� j,k�m
max
s∈K

∣∣L(s + id jτ ,χ) − L(s + idkτ ,χ)
∣∣ < ε

}
> 0. (2)

If m = 2 then Pańkowski [16] using Six Exponentials Theorem showed that (2) holds for d1,d2 are
real numbers linearly independent over Q.

We prove the following theorem.

Theorem 1. Let 1 = d1,d2, . . . ,dm be nonzero algebraic real numbers and let K be a compact subset of the
strip 1/2 < σ < 1. Then for any Dirichlet character χ and any ε > 0 the inequality (2) is valid.

Note that Theorem 1 remains true if d1,d2, . . . ,dm are replaced by dd1,dd2, . . . ,ddm , where d ∈ R.
The next theorem shows that ‘lim inf’ in the inequality (2) often can be replaced by ‘lim’.

Theorem 2. Let d1,d2, . . . ,dm be any real numbers, let χ1,χ2, . . . ,χm be any Dirichlet characters, and let K
be a compact subset of the strip 1/2 < σ < 1. Then for any ε > 0, except an at most countable set of ε, there
exists a limit

lim
T →∞

1

T
meas

{
τ ∈ [0, T ]: max

1� j,k�m
max
s∈K

∣∣L(s + id jτ ,χ j) − L(s + idkτ ,χk)
∣∣ < ε

}
.

The mentioned results of Nakamura and Pańkowski together with Theorem 1 and Theorem 2 lead
to the following corollary.
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Corollary 3. Let d be a nonzero real number and let K be a compact subset of the strip 1/2 < σ < 1. Then for
any Dirichlet character χ and any ε > 0, except an at most countable set of ε,

lim
T →∞

1

T
meas

{
τ ∈ [0, T ]: max

s∈K

∣∣L(s + iτ ,χ) − L(s + idτ ,χ)
∣∣ < ε

}
> 0. (3)

From the proof of Theorem 2 we see that for any real numbers d1, . . . ,dm and for any Dirichlet
characters χ1, . . . ,χm the function

g(τ ) = max
1� j,k�m

max
s∈K

∣∣L(s + id jτ ,χ j) − L(s + idkτ ,χk)
∣∣

is Besicovitch almost periodic function (for the definition see Section 3 above the proof of Theorem 2).
Let ε > 0 be such that the limit (3) exists. For such ε we define a characteristic function Iε(τ ), τ ∈ R,
by

Iε(τ ) =
{

1, if g(τ ) < ε,

0, if g(τ ) � ε.
(4)

It is known (Jessen and Wintner [9, Section 12]) that Iε(τ ) is Besicovitch almost periodic function
also. Thus we can say that self-approximations of Dirichlet L-functions, considered in this paper, usu-
ally appear in a regular way.

Theorem 1 and Theorem 2 are proved in Section 3. Next we state several lemmas.

2. Lemmas

We start from the following statement.

Lemma 4. Let K be a compact subset of the rectangle U . Let

d = min
z∈∂U

min
s∈K

|s − z|.

If f (s) is analytic on U and ∫
U

∣∣ f (s)
∣∣2

dσ dt � ε,

then

max
s∈K

∣∣ f (s)
∣∣ �

√
ε/π

d
.

Proof. The lemma can be found in Gonek [8, Lemma 2.5]. �
Lemma 5. Let a1, . . . ,aN be real numbers linearly independent over the rational numbers. Let γ be a region
of the N-dimensional unit cube with volume V (in the Jordan sense). Let Iγ (T ) be the sum of the intervals
between t = 0 and t = T for which the point (a1t, . . . ,aNt) is mod 1 inside γ . Then

lim
T →∞

Iγ (T )

T
= V .

Proof. This is Theorem 1 in Appendix, Section 8, of Voronin and Karatsuba [11]. �
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For a curve ω(t) in RN we introduce the notation

{
ω(t)

} = (
ω1(t) − [

ω1(t)
]
, . . . ,ωN (t) − [

ωN(t)
])

,

where [x] denotes the integral part of x ∈ R.

Lemma 6. Suppose that the curve ω(t) is uniformly distributed mod 1 in RN . Let D be a closed and Jordan
measurable subregion of the unit cube in RN and let Ω be a family of complex-valued continuous functions
defined on D. If Ω is uniformly bounded and equicontinuous, then

lim
T →∞

1

T

T∫
0

f
({

ω(t)
})

1D(t)dt =
∫
D

f (x1, . . . , xN )dx1 . . .dxN

uniformly with respect to f ∈ Ω , where 1D(t) is equal to 1 if ω(t) ∈ D mod 1, and 0 otherwise.

Proof. The lemma is Theorem 3 in Appendix, Section 8, of Voronin and Karatsuba [11]. �
Lemma 7. Let pn be the nth prime number and 1 = d1,d2, . . . ,dl be algebraic real numbers which are linearly
independent over Q. Then the set {dk log pn}1�k�l

n∈N
is linearly independent over Q.

Proof. This is Proposition 2.2 in Nakamura [15]. The proof is based on Baker’s [4, Theorem 2.4] re-
sult. �
3. Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. We define a truncated Dirichlet L-function

Lv(s,χ) =
∏
p�v

(
1 − χ(p)

ps

)−1

.

Roughly speaking, we first prove Theorem 1 for the truncated Dirichlet L-function and later we show
that the tail is small.

Let {d1,d2, . . . ,dl} be a maximal linearly independent (over Q) subset of the set {d1,d2, . . . ,dm}.
Then there are integers a �= 0 and ak,1,ak,2, . . . ,ak,l such that

dk = 1

a
(ak,1d1 + ak,2d2 + · · · + ak,ldl) for l < k � m. (5)

Let

A = max
l<k�m

{|ak,1| + |ak,2| + · · · + |ak,l|
}
.

Denote by ‖x‖ the minimal distance of x ∈ R to an integer. If

∥∥∥∥τ dn log p

2πa

∥∥∥∥ < δ for p � v and 1 � n � l, (6)

then
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∥∥∥∥τ dn log p

2π

∥∥∥∥ < aδ for p � v and 1 � n � l

and, by the relation (5),

∥∥∥∥τ dk log p

2π

∥∥∥∥ < Aδ for p � v and l < k � m.

By this and by the continuity of the function Lv(s,χ) we have that for any ε > 0 there is δ > 0 such
that for τ satisfying (6)

max
1�k,n�m

max
s∈K

∣∣log Lv(s + idkτ ,χ) − log Lv(s + idnτ ,χ)
∣∣ < ε. (7)

For positive numbers δ, v , and T we define the set

ST = ST (δ, v) =
{
τ : τ ∈ [0, T ],

∥∥∥∥τ dn log p

2πa

∥∥∥∥ < δ, p � v, 1 � n � l

}
. (8)

Let U be an open bounded rectangle with vertices on the lines σ = σ1 and σ = σ2, where 1/2 < σ1 <

σ2 < 1, such that the set K is in U . Let y > v . We have

1

T

∫
ST

∫
U

m∑
k=1

∣∣log L y(s + idkτ ,χ) − log Lv(s + idkτ ,χ)
∣∣2

dσ dt dτ

=
m∑

k=1

∫
U

1

T

∫
ST

∣∣log L y(s + idkτ ,χ) − log Lv(s + idkτ ,χ)
∣∣2

dτ dσ dt.

For the inner integrals of the right-hand side of the last equality we will apply Lemma 6. Let pn be
the nth prime number. There are indexes M and N such that pM � v < pM+1 and pN � y < pN+1. By
generalized Kronecker’s theorem (Lemma 5) and by Lemma 7 the curve

ω(τ) =
(
τ

dk log pn

2πa

)1�k�l

1�n�N

is uniformly distributed mod 1 in RlN . Let R ′ be a subregion of the lN-dimensional unit cube defined
by inequalities

‖yk,n‖ � δ for 1 � k � l and 1 � n � M

and ∣∣∣∣yk,n − 1

2

∣∣∣∣ � 1

2
for 1 � k � l and M + 1 � n � N.

Let R be a subregion of the lM-dimensional unit cube defined by inequalities

‖yk,n‖ � δ for 1 � k � l and 1 � n � M.
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Clearly

meas R ′ = meas R = (2δ)lM .

Note that

log L y(s + idkτ ,χ) − log Lv(s + idkτ ,χ) = log
L y

Lv
(s + idkτ ,χ)

= −
∑

v<p�y

log

(
1 − χ(p)

ps+idkτ

)
=

∑
v<p�y

∞∑
j=1

χ j(p)

jp j(s+idkτ )

=
∑

M<n�N

∞∑
j=1

χ j(pn)

jp j(s+idkτ )
n

. (9)

Thus in view of the linear dependence (5) we get

lim
T →∞

1

T

∫
ST

m∑
k=1

∣∣∣∣log
L y

Lv
(s + idkτ ,χ)

∣∣∣∣
2

dτ

= lim
T →∞

1

T

∫
ST

(
l∑

k=1

∣∣∣∣log
L y

Lv
(s + idkτ ,χ)

∣∣∣∣
2

+
m∑

k=l+1

∣∣∣∣log
L y

Lv

(
s + i

a
(ak,1d1 + ak,2d2 + · · · + ak,ldl)τ ,χ

)∣∣∣∣
2
)

dτ .

By Lemma 6 and equality (9) we obtain that the last limit is equal to

∫
R ′

(
l∑

k=1

∣∣∣∣∣
∑

M<n�N

∞∑
j=1

χ j(p)e−2π i jayk,n

jp js
n

∣∣∣∣∣
2

+
m∑

k=l+1

∣∣∣∣∣
∑

M<n�N

∞∑
j=1

χ j(p)e2π i j(ak,1 y1,n+ak,2 y2,n+···+ak,l yl,n)

jp js
n

∣∣∣∣∣
2)

dy1,1 . . .dyl,N

= meas R

1∫
0

. . .

1∫
0

(
l∑

k=1

∣∣∣∣∣
∑

M<n�N

∞∑
j=1

χ j(p)e−2π i jayk,n

jp js
n

∣∣∣∣∣
2

+
m∑

k=l+1

∣∣∣∣∣
∑

M<n�N

∞∑
j=1

χ j(p)e2π i j(ak,1 y1,n+ak,2 y2,n+···+ak,l yl,n)

jp js
n

∣∣∣∣∣
2)

dy1,M+1 . . .dyl,N

= m meas R
∑

v<p�y

∞∑
j=1

1

jp2 jσ

 meas R

∑
p>v

1

p2σ
.
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Consequently

1

T

∫
ST

∫
U

m∑
k=1

∣∣log L y(s + idkτ ,χ) − log Lv(s + idkτ ,χ)
∣∣2

dσ dt dτ 
 meas R
∑
p>v

1

p2σ1
. (10)

Again, by generalized Kronecker’s theorem (Lemma 5),

lim
T →∞

1

T
meas ST = meas R. (11)

By (10) and (11), for large v , as T → ∞, we have

meas

{
τ : τ ∈ ST ,

∫
U

m∑
k=1

∣∣∣∣log
L y

Lv
(s + idkτ ,χ)

∣∣∣∣
2

dσ dt <

√∑
p>v

1

p2σ1

}
>

1

2
T meas R.

Then Lemma 4 gives

meas

{
τ : τ ∈ ST , max

s∈K

m∑
k=1

∣∣∣∣log
L y

Lv
(s + idkτ ,χ)

∣∣∣∣
2

dτ � 1

d
√

π

( ∑
p>v

1

p2σ1

) 1
4
}

>
1

2
T meas R,

where d = minz∈∂U mins∈K |s − z|. By the continuity of the logarithm we obtain that for any ε > 0
there is v = v(ε) such that for any y > v

meas

{
τ : τ ∈ ST , max

s∈K

m∑
k=1

∣∣L y(s + idkτ ,χ) − Lv(s + idkτ ,χ)
∣∣2

dτ < ε

}
>

1

2
T meas R. (12)

Now we will prove that for any δ > 0 there is y = y(δ) such that

meas

{
τ : τ ∈ [0, T ], max

s∈K

m∑
k=1

∣∣L(s + idkτ ,χ) − L y(s + idkτ ,χ)
∣∣2

dτ < δ

}
> (1 − δ)T . (13)

The last formula together with (7), (8) and (12) yields Theorem 1. We return to the proof of (13). By
the mean value theorem of the Dirichlet L-function (Steuding [17, Corollary 6.11]) and by Carlson’s
theorem (Titchmarsh [18, Chapter 9.51]) we obtain

lim
T →∞

1

T

T∫
0

∣∣L(s + ixτ ,χ) − L y(s + ixτ ,χ)
∣∣2

dτ =
∑
n>y

|χ(n)|
n2σ

,

where x is fixed. Thus (13) follows in view of

T∫
0

∫
U

m∑
k=1

∣∣L(s + idkτ ,χ) − L y(s + idkτ ,χ)
∣∣2

dσ dt dτ 

∑
n>y

|χ(n)|
n2σ1

.

Theorem 1 is proved. �
The proof of Theorem 2 is based on the ideas of Mauclaire [13,14]. It uses the theory of Besicovitch

almost periodic functions. We recall related definitions.
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Let

P (τ ) =
∑
n∈F

aneiλnτ ,

where F is a finite set, λn are any real numbers, and the coefficients an are any complex numbers.
For real τ we say that P (τ ) is a trigonometric polynomial.

A function f : R → C is called uniformly almost periodic (U .A.P .) if given any ε > 0, there exists
a trigonometric polynomial P (τ ) such that

sup
τ∈R

∣∣ f (τ ) − P (τ )
∣∣ � ε.

A function f : R → C is called Bq almost periodic (Bq.A.P .), q � 1, if given any ε > 0, there exists
a trigonometric polynomial P (τ ) such that

lim sup
T →∞

1

2T

T∫
−T

∣∣ f (τ ) − P (τ )
∣∣q

dτ � ε. (14)

If q = 1 then we write B.A.P . (Besikovitch almost periodic) instead of B1.A.P . For any q � 1 it is
clear that every U .A.P . function is Bq.A.P . and that every Bq.A.P . function is B.A.P .

Proof of Theorem 2. Let

g(τ ) = max
1� j,k�m

max
s∈K

∣∣L(s + id jτ ,χ j) − L(s + idkτ ,χk)
∣∣

and let

F T (x) = 1

T
meas

{
τ ∈ [0, T ]: g(τ ) < x

}
be a distribution function of g(τ ). If g(τ ) is B.A.P . then it is known (see Jessen and Wintner [9,
Theorem 27] or Laurinčikas [12, Theorem 6.3, Chapter 2]) that there is a distribution function F (x)
such that F T (x) converges weakly to F (x) for T → ∞. It means that if F (x) is continuous at x = ε
then

lim
T →∞ F T (ε)

exists. Thus to obtain Theorem 2 we need to show that g(τ ) is B.A.P .

We remark that if a(t) and b(t) are both non-negative B.A.P . functions of t , then t �→ max(a(t),
b(t)) is also B.A.P . since max(a(t),b(t)) can be written as

max
(
a(t),b(t)

) = 1

2

(∣∣a(t) − b(t)
∣∣ + (

a(t) + b(t)
))

,

and the modulus of B.A.P . function is again B.A.P . By this we have that g(τ ) is B.A.P . if the function

f (τ ) = max
s∈K

∣∣L(s + id1τ ,χ1) − L(s + id2τ ,χ2)
∣∣

is B.A.P . In view of the note below the formula (14) the function f (τ ) is B.A.P . if there are U .A.P
functions f N (τ ) such that
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lim
N→+∞

(
lim sup

T →+∞
1

2T

T∫
−T

∣∣ f (τ ) − f N(τ )
∣∣2

dτ

)
= 0. (15)

Let

LN (s,χ) =
∑
n�N

χ(n)

ns

be a partial sum of the Dirichlet series associated with L(s,χ). Next we show that the equality (15)
is true with

f N(τ ) = max
s∈K

∣∣LN(s + id1τ ,χ1) − LN(s + id2τ ,χ2)
∣∣.

By repeating the proof of Proposition 12 of Mauclaire [13] we get that f N (τ ) is U .A.P . for any
d1,d2 ∈ R. Note that the case when d1 or d2 is equal to zero is already included in Proposition 12 of
Mauclaire [13].

Further we have that

L(s + id1τ ,χ1) − L(s + id2τ ,χ2)

= (
L(s + id1τ ,χ1) − LN (s + id1τ ,χ1) + LN (s + id2τ ,χ2) − L(s + id2τ ,χ2)

)
+ (

LN(s + id1τ ,χ1) − LN(s + id2τ ,χ2)
)
,

and as a consequence, we get that

∣∣ f (τ ) − f N(τ )
∣∣ � sup

s∈K

∣∣L(s + id1τ ,χ1) − LN (s + id1τ ,χ1) + LN (s + id2τ ,χ2) − L(s + id2τ ,χ2)
∣∣

� sup
s∈K

∣∣L(s + id1τ ,χ1) − LN (s + id1τ ,χ1)
∣∣

+ sup
s∈K

∣∣LN(s + id2τ ,χ2) − L(s + id2τ ,χ2)
∣∣.

Then, in view of the inequality (a + b)2 � 2a2 + 2b2, we obtain that

1

2T

T∫
−T

∣∣ f (τ ) − f N(τ )
∣∣2

dt � 1

T

T∫
−T

(
sup
s∈K

∣∣L(s + id1τ ,χ1) − LN(s + id1τ ,χ1)
∣∣)2

dt

+ 1

T

T∫
−T

(
sup
s∈K

∣∣L(s + id2τ ,χ2) − LN(s + id2τ ,χ2)
∣∣)2

dt.

By Mauclaire [14, Theorem 5.1] we have that, for any real d,

lim
N→+∞

(
lim sup

T →+∞
1

2T ′

T∫
−T

(
sup
s∈K

∣∣ f (s + idt) − f N(s + idt)
∣∣)2

dt

)
= 0.

This proves the equality (15) and Theorem 2 �
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From the proof we see that Theorem 2 remains true with Dirichlet L-functions L(s,χ j), j =
1, . . . ,m, replaced by any general Dirichlet series satisfying conditions of Theorem 5.1 of Mau-
claire [14].

Remark. The ‘lim inf’ version of Corollary 3 is independently obtained by Takashi Nakamura in “The
generalized strong recurrence for nonzero rational parameters”, Arch. Math. 95 (2010) 549–555.
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