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1. Introduction

In 1981 Bagchi [1] discovered an interesting connection between the Riemann Hypoth-
esis and Voronin’s universality theorem (see [18]) for the Riemann zeta function ζ(s). 
Namely, he proved that ζ(s) �= 0 for Re(s) > 1

2 if and only if for every compact set 
K ⊂ {s ∈ C : 1

2 < Re(s) < 1} with connected complement and every ε > 0 we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s + iτ) − ζ(s)| < ε

}
> 0, (1)

where meas{·} denotes the real Lebesgue measure. In the language of topological dynam-
ics (see [6]) (1) is called the strong recurrence property for the Riemann zeta function.

Bagchi’s observation was extended to the case of Dirichlet L-functions by himself in 
[2] and [3], and to the case of general universal L-functions, for which the Generalized 
Riemann Hypothesis is expected, in [17, Theorem 8.4].

Nakamura [10] suggested the following related problem: find all d such that for every 
compact set K ⊂ {s ∈ C : 1

2 < Re(s) < 1} with connected complement and every ε > 0
we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s + iτ) − ζ(s + idτ)| < ε

}
> 0. (2)

This property can be called generalized strong recurrence with parameter d. However, it 
should be noted that sometimes in the literature it is called also the self-approximation 
property with parameter d. Using this notion Bagchi’s result states that the Riemann 
Hypothesis is equivalent to the generalized strong recurrence property for ζ(s) with 
parameter d = 0.

Nakamura, in the same paper, gave the partial answer to this question by proving 
that (2) holds if d is algebraic irrational. He also observed that the generalized strong 
recurrence property holds for almost all real parameters d. His result was improved by 
the author in [13] to all irrational parameter d. The positive answer for non-zero rational 
d was claimed by Garunkštis [5] and Nakamura [11]. Unfortunately, their arguments have 
a gap, which was pointed out by Nakamura and Pańkowski [12] and partially filled, in 
the same paper, for all non-zero rational d = a

b with gcd(a, b) = 1 and |a − b| �= 1.
The crucial step in the proof of the generalized strong recurrence property with pa-

rameter d is to show that the following set

{log p : p is prime} ∪ {d log p : p is prime} (3)

is linearly independent over Q. This was proved for all algebraic irrational d and for 
almost all d by Nakamura [10]. Moreover, by using the six exponential theorem from the 
theory of transcendental numbers, the author noticed in [13] that for a given irrational 
d only a finite number of primes p can possibly be involved in the linear dependence 
of (3). This allowed to prove the following joint universality theorem, which easily implies 
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the generalized strong recurrence property. It was showed by Nakamura for algebraic 
irrational d and by the author for all irrational d.

Theorem A. Let d be irrational, K ⊂ {s ∈ C : 1
2 < Re(s) < 1} be a compact set with 

connected complement and f, g be continuous non-vanishing functions on K, which are 
analytic in the interior of K. Then, for every ε > 0, we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : maxs∈K |ζ(s + iτ) − f(s)| < ε

maxs∈K |ζ(s + idτ) − g(s)| < ε

}
> 0. (4)

The above joint universality theorem is also related to the following open problem 
introduced by Andreas Weiermann in 2008 during the conference “New Directions in the 
Theory of Universal Zeta- and L-Functions” in Wur̈zburg:

Assume a, b are transcendental and algebraically independent and functions f, g satisfy 
the assumptions of the universality theorem. Can we find one single real τ such that f is 
approximated by ζ(s + iaτ) and g is approximated by ζ(s + ibτ) and both approximations 
are uniformly as usual?

Thus, Theorem A implies that the above open problem is true even for linearly inde-
pendent real non-zero numbers a, b.

The case when d is rational is more delicate, since one can easily observe that the set 
(3) is linearly dependent over Q, even if we exclude a finite number of primes. So, in 
order to prove (2) for rational d = a

b with |a − b| �= 1 and gcd(a, b) = 1, Nakamura and 
the author [12] proved only that (4) holds for one common function f = g depending 
on d. Moreover, by the lack of linear independence over Q of (3), it was expected that 
Theorem A with arbitrary given functions f, g cannot hold for rational d. However, in 
the present paper we introduce the approach which allows to overcome the fact that (3)
is not linearly independent over Q and we prove the following joint universality theorem. 
This theorem solves completely Weiermann’s problem, since it is obvious that we cannot 
expect a positive answer if a = b or a = −b by the fact that ζ(s) = ζ(s).

Theorem 1.1. Let a, b ∈ Z \ {0} with ab �= ±1. Assume that K ⊂ {s ∈ C : 1
2 < Re(s) < 1}

is a compact set with connected complement and fa, fb are non-vanishing continuous on 
K and analytic in the interior of K. Then, for every ε > 0, we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

c∈{a,b}
max
s∈K

|ζ(s + icτ) − fc(s)| < ε

}
> 0.

Remark 1.2. It should be mentioned that the above theorem can be easily generalized 
to the wide class of L-functions, for which a universality theorem is proved by Voronin’s 
approach (for example for a wide class introduced in [8, Chapter VII, Section 3.1] or [7, 
Section 3]).

Moreover, the above theorem together with Theorem A can be treated as a new 
method how to approximate more than one function by certain modifications of one zeta 
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or L-function. Indeed, the above results say that if we desire to approximate two analytic 
non-vanishing functions f, g by a given L-function L(s) it suffices to consider the shifts 
L(s + iτ), L(s + idτ), where d is non-zero real number �= ±1. A different well-known 
method of this kind is to consider twists of L(s) with pairwise non-equivalent Dirichlet 
characters (see [17, Theorem 12.8]).

As an immediate consequence of Theorem 1.1 we obtain the following corollary.

Corollary 1.3. Let d �= 0, ±1 be a rational number. Assume that K ⊂ {s ∈ C : 1
2 <

Re(s) < 1} is a compact set with connected complement and f , g are non-vanishing 
continuous on K and analytic in the interior of K. Then, for every ε > 0, we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : maxs∈K |ζ(s + iτ) − f(s)| < ε

maxs∈K |ζ(s + idτ) − g(s)| < ε

}
> 0.

Obviously, taking f ≡ g in the above corollary proves (2) for all rational d �= 0, ±1. 
However, for d = 1 the inequality (2) holds trivially, and the generalized strong recurrence 
property for d = −1 is implied by ζ(s + iτ) = ζ(s− iτ) and the fact that, by Voronin’s 
theorem, we have maxs∈K∪Kc

|ζ(s + iτ) − 1| < ε, where Kc := {s : s ∈ K}. Therefore, 
the following result holds.

Theorem 1.4. Let d �= 0 be a real number and K ⊂ {s ∈ C : 1
2 < Re(s) < 1} be a compact 

set with connected complement. Then, for every ε > 0, we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s + iτ) − ζ(s + idτ)| < ε

}
> 0.

The above theorem reduces Nakamura’s problem to the case when d = 0, which, as 
we mentioned before, is equivalent to the Riemann Hypothesis.

2. Denseness lemma

The so-called denseness lemma (see Lemma 2.4 below) plays a crucial role in the 
proof of our main theorem, and, essentially, contains the main idea of this paper how 
to overcome the lack of linear independence of (3). In order to prove it we need the 
following lemmas concerning analytic functions of exponential type.

Lemma 2.1. (See [9, Lemma 6].) Let G(z) be an analytic function satisfying

0 �≡ G(z) =
∞∑

m=0

αm

m! z
m, |αm| < Am

for some positive constant A. Let c1 > 0 and N1 be a positive integer. Then there exist 
a positive c2 and a positive integer N2 > N1 such that for any sufficiently large x the 
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interval [x, x + c1x
−N1 ] contains a subinterval I of length |I| ≥ c2x

−N2 such that G(t)
has no zeros on I.

Lemma 2.2. Let U ⊂ C be a simply connected bounded smooth Jordan domain such that 
its closure U is a subset of D. Assume that for all s ∈ U we have 1/2 < σ1 < Re s <
σ2 < 1 and g1, g2 are non-zero elements of the Bergman space B2(U) = {f ∈ L2(U) :
f is holomorphic on U}. For z ∈ C we put

Gj(z) =
∫∫
U

e−szgj(s)dσdt, j = 1, 2.

Then for every η with 0 < η < π/2 there exist a sequence xn tending to ∞ and intervals 
In ⊂ [xn, xn + 1] of length |In| ≥ Bx−N

n (N > 0, B := B(U, η) > 0), such that for all 
t ∈ In we have

|G1(t)| 	 e−σ2xn

and, moreover, the argument of G1(t) and G2(t) on In varies less than η.

Proof. Firstly, let us find a sequence xn. Notice that G1 �≡ 0, since otherwise, taking 
the n-th derivative of G1 at point z = 0 and using the fact that the linear space of 
polynomials is dense in the Bergman space (see for example [15, Theorem 7.2.2]), we 
get the contradiction with g �= 0. On the other hand, G1(z) 
 ec|z| for some positive 
constant c depending on U , and for sufficiently small ω = ω(U) > 0 and for all complex 
z with |arg(−z)| ≤ ω we have

|eσ2zG1(z)| 
 1.

Hence, by [7, Lemma 3], which proof based on the Phragmén–Lindelöf principle, there 
exists a real sequence xn tending to ∞ such that

|G1(xn)| 	 e−σ2xn .

Let us fix n and put x = xn. As in the proof of [7, Lemma 4] one can prove that for 
t ∈ [x, x + 1] and every C > 0 we have

G1(t) = P (t) + O(e−Ct),

where P (t) is a polynomial of degree 
 x.
Let x0 ∈ [x, x + 1] be such that |P (x0)| = maxx≤t≤x+1 |P (t)|. Then by Markoff’s 

inequality (see e.g. [16]) we have

max |P ′(t)| 
 x2|P (x0)|

x≤t≤x+1
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and hence for t ∈ [x, x + 1] satisfying |t − x0| ≤ B0
x2
0

with sufficiently small B0 > 0 we 
have

|P (x0)| − |P (t)| ≤ |P (t) − P (x0)| ≤ max
x≤t≤x+1

|P ′(t)||t− x0| 
 B0|P (x0)|

≤ sin
(η

2

)
|P (x0)|, (5)

so

|P (t)| ≥
(
1 − sin

(η
2

))
|P (x0)| ≥

(
1 − sin

(η
2

))
|P (x)|.

Therefore, for t ∈ I0 := [x, x + 1] ∩ [x0 −B0/x
2
0, x0 + B0/x

2
0] it holds

(
1 − sin

(η
2

))
|G1(x)| ≤

(
1 − sin

(η
2

))
|P (x)| + O

(
e−Cx

)
≤ |P (t)| + O

(
e−Cx

)
≤ |G1(t)| + O

(
e−Cx

)
and hence

|G1(t)| ≥
(
1 − sin

(η
2

))
|G1(x)| + O

(
e−Cx

)
	 e−σ2x.

Using again (5) we get that
∣∣∣∣ G1(t)
G1(x0)

− 1
∣∣∣∣ ≤ |P (t) − P (x0)| + O(e−Cx)

|G1(x0)|
≤

sin
(
η
2
)
|P (x0)| + O(e−Cx)
|G1(x0)|

≤ sin
(η

2

)
+ O(e−(C−σ2)x).

Thus 
∣∣∣arg G1(t)|

G1(x0)

∣∣∣ ≤ η on I0 for sufficiently large x.
Now, we use Lemma 2.1 to find subinterval I of I0 such that argG2(t) varies at 

most η on I. The fact that g2 is analytic implies (see the proof of [8, Lemma 7.1]) 
that

G2(z) =
∞∑

m=0

αm

m! z
m, |αm| < Am

for some A > 0. Moreover, since g2 �= 0, we have G2 �≡ 0.
Let us define βm = αm+αm

2 , γm = αm−αm

2i and put

G1
2(z) =

∞∑
m=0

βm

m! z
m, G2

2(z) =
∞∑

m=0

γm
m! z

m.

Then for any real t we have G1
2(t) = ReG2(t) and G2

2(t) = ImG2(t).
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Now, by Lemma 2.1 to G1
2(z) and G2

2(z), we can find subinterval I1 ⊂ I of length 
|I1| ≥ B1x

−N1 such that ReG2(t) and ImG2(t) have no zeros on I1. Therefore, there 
exists k1 ∈ {0, 1, 2, 3} such that for t ∈ I1 we have

k1

2 π ≤ argG2(t) ≤
k1 + 1

2 π,

so the argument of G2(t) on I1 varies less than π/2.
Next, repeating the above argument for G3(z) = exp(−k1πi

2 − πi
4 )G2(z) instead of G2, 

gives that there is a subinterval I2 ⊂ I1 of lenght |I2| ≥ B2x
−M2 such that for t ∈ I2 we 

have

k1

2 π + k2

4 π ≤ argG2(t) ≤
k1

2 π + k2 + 1
4 π

for suitable k2 ∈ {0, 1}, and hence the argument of G2(t) on I2 varies less than π/4.
Thus, applying this reasoning sufficiently many times we can prove that there is an 

interval I ⊂ I0 of length |I| ≥ Bx−N such that the argument of G2(t) varies less than η, 
and the proof is complete. �

In the sake of simplicity, for a finite set M of prime numbers and for real numbers θp, 
p ∈ M , define

ζM (s, (θp) =
∏
p∈M

(
1 − e(θp)

ps

)−1

,

where, as usual, e(t) = exp(2πit). Moreover, let us call an open bounded subset U
of C admissible when for every sufficiently small positive ε the set Uε := {s ∈ C :
∃s0∈U |s − s0| < ε} has connected complement.

Now we are ready to formulate and prove the denseness lemma, which proof based on 
the following generalization of the classical Riemann rearrangement theorem.

Lemma 2.3. (See [14].) Let H be a real Hilbert space and let un ∈ H be such that ∑∞
n=1 ‖un‖2 < ∞. Assume that for every e ∈ H with ‖e‖ = 1 the series 

∑∞
n=1〈un, e〉

are conditionally convergent after suitable permutation of terms. Then, for every v ∈ H

there exists a permutation (nk) such that 
∑∞

k=1 unk
= v.

Lemma 2.4. Let U be an admissible set satisfying U ⊂ {s ∈ C : 1/2 < Re(s) < 1} and 
a, b ∈ Z \ {0} with a �= ±b. Then there exists a sequence θp of real numbers indexed by 
primes such that for any analytic non-vanishing functions fa, fb on U , ε > 0 and y > 0
there exists a finite set of primes M containing all primes p ≤ y such that

max
c∈{a,b}

max
s∈U

|ζM (s, (cθp)) − fc(s)| < ε.
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Proof. Let U1 be a simply connected smooth Jordan domain such that U1 is admissible, 
fa, fb are analytic non-vanishing on U1 and U ⊂ U1 ⊂ U1 ⊂ {s ∈ C : σ1 < Re(s) < σ2}
for suitable σ1, σ2 with 1/2 < σ1 < σ2 < 1. For suitable analytic ga, gb we have fc =
exp gc for c ∈ {a, b}.

Without loss of generality we can assume that |a| < |b|. Define

up(s) =
(
− log

(
1 − e(aθp)

ps

)
,− log

(
1 − e(bθp)

ps

))

and

u∗
p(s) =

(
e(aθp)
ps

,
e(bθp)
ps

)
,

where θpn
= n

l , pn denotes the n-th prime number and l is a positive integer depending 
on a, b, which we choose later.

We shall use Lemma 2.3 for the real Hilbert space B2(U1) × B2(U1) with the inner 
product given by

〈φ, ψ〉 =
2∑

j=1
Re

∫∫
U1

φj(s)ψj(s)dσdt

for φ = (φ1, φ2), ψ = (ψ1, ψ2).
We are going to prove that for any φ = (φ1, φ2) ∈ B2(U1) × B2(U1) with ||φ|| = 1

there exists a permutation of the series 
∑

p up(s), which converges to φ. Then, using the 

fact that |f(z)| ≤ ||f ||√
π dist(z,∂U1) for any analytic function f and z lying in the interior 

of U1 (see [4, Chapter III, Lemma 1.1]), we get that approximation with respect to L2

norm on U1 implies uniform approximation on U , provided U ⊂ U1, which completes 
the proof.

Obviously, since Re(s) > σ1 > 1/2 for every s ∈ U1, we have 
∑

p ||up(s)||2 < ∞. Hence 
it suffices to prove that there are two permutations of the series 

∑
p〈up(s), φ〉 tending to 

+∞ and −∞, respectively. In fact, we show only the existence of a permutation of the 
series, which diverges to +∞, since the case −∞ is similar and can be left to the reader. 
Moreover, let us observe that it is sufficient to prove it for u∗

p(s) instead of up(s), since ∑
p(up(s) − u∗

p(s)) converges absolutely for Re(s) > 1/2.
The case when φ1 = 0 or φ2 = 0 can be treated in the same way, so without loss 

of generality assume that φ2 = 0. Then we have to show that some permutation of the 
series

∑
p

〈u∗
p, φ〉 =

∑
p

Re e(aθp)
∫∫
U1

1
ps

φ1(s)dσdt

diverges to +∞.
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By Lemma 2.2 we can show that there are infinitely many intervals I = [x, x +Bx−N ]
with B, N > 0 such that G(log p) =

∫∫
U1

p−sφ1(s)dσdt 	 exp(−σ2x) and | argG(log p) −
ω1| ≤ π

4 for suitable ω1 ∈ [−π, π], provided log p ∈ I. Hence for sufficiently large l > 0
there is an integer k with 0 ≤ k < l such that arg e(ak/l)G(log p) ∈ [−π/3, π/3], which 
implies that, if log pn ∈ I and n ≡ k mod l, then Re e(eθp)G(log p) ≥ c1 exp(−σ2x) for 
some c1 > 0. This together with σ2 < 1 and the fact that the number of primes pn
satisfying log pn ∈ I and n ≡ k mod l is 	 ex/xN+2 shows that there is a permutation 
(nk) such that 

∑
k〈u∗

pnk
, φ〉 = +∞.

Next let us consider the case when φ1 �= 0 and φ2 �= 0. We have to show that there is 
a permutation (nk) such that

∑
k

〈u∗
pnk

, φ〉 =
∑
k

Re e(aθpnk
)G1(log pnk

) + Re e(bθpnk
)G2(log pnk

) = +∞,

where

Gj(z) =
∫∫
U1

e−szφj(s)dσdt, j = 1, 2.

Again, by Lemma 2.2, we see that there exist infinitely many intervals I = [x, x +Bx−N ]
with B, N > 0 such that

G1(t) 	 e−σ2x, t ∈ I

and for every η > 0 there are ω1, ω2 ∈ [−π, π] such that

| argGj(t) − ωj | ≤ η, t ∈ I, j = 1, 2.

We shall show that for sufficiently large l there is k with 0 ≤ k < l such that for t ∈ I

we have

arg e(ak/l)G1(t) ∈
[
−π

2 + η,
π

2 − η
]

and arg e(bk/l)G2(t) ∈
[
−π

2 ,
π

2

]
. (6)

Then for pn satisfying log pn ∈ I and n ≡ k mod l we have

Re e(aθpn
)G1(log pn) ≥ c1e

−σ2x (c1 > 0) and Re e(bθpn
)G2(log pn) ≥ 0.

Hence

∑
log pn∈I

n≡k mod l

〈u∗
pn
, φ〉 ≥ c′1

e(1−σ2)x

xN+2

for some positive constant c′1.
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In order to prove the existence of such k, notice that for every θ with |2πaθ + ω1| ≤
π/2 − 2η we have

arg e(aθ)G1(t) ∈
[
−π

2 + η,
π

2 − η
]
, t ∈ I,

and
∣∣∣∣2πbθ + b

a
ω1

∣∣∣∣ = |b|
|a| |2πaθ + ω1| ≤

|b|
|a|

π

2 − |b|
|a|2η.

From the assumption |b| > |a| it is easy to observe that for sufficiently small η :=
η(a, b) > 0 the right hand side is at least π2 + π

4|a| . Hence the set

A = {2πbθ + ω2 : |2πaθ + ω1| ≤ π/2 − 2η}

covers all values in the interval
[
− |b|
|a|

π

2 + |b|
|a|2η + ω2 −

b

a
ω1,

|b|
|a|

π

2 − |b|
|a|2η + ω2 −

b

a
ω1

]

of length ≥ π + π
2|a| . Then, for sufficiently small η, the set A contains an interval of size 

≥ π
4|a| for which arg e(bθ)G2(t) ∈

[
−π

2 ,
π
2
]
, t ∈ I. Therefore, the set of θ satisfying

arg e(aθ)G1(t) ∈
[
−π

2 + η,
π

2 − η
]

and arg e(bθ)G2(t) ∈
[
−π

2 ,
π

2

]

has the measure ≥ 1
8|b||a| , so for sufficiently small l, depending only on a and b, this set 

contains a rational number of the form k
∗

l , and (6) holds by taking k ≡ k∗ mod l with 
0 ≤ k < l. �
3. Proof of Theorem 1.1

In order to prove Theorem 1.1 we shall use some results from the theory of diophantine 
approximation.

Let us recall that a vector x ∈ Rn belongs to γ ⊂ Rn mod 1 if there exists a vector 
y ∈ Zn such that x − y ∈ γ.

Theorem B (Kronecker). Let α1, . . . , αn be real numbers linearly independent over Q and 
γ be a subregion of the n-dimensional unit cube with Jordan measure m(γ). Then

lim
T→∞

1
T

meas {τ ∈ (0, T ] : (α1τ, . . . , αnτ) ∈ γ mod 1} = m(γ).
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Proof. This is [8, Theorem A.8.1]. �
We say that the curve γ(τ) : [0, ∞] → Rn is uniformly distributed mod 1 in Rn if for 

every αj , βj , j = 1, 2, . . . , n, with 0 ≤ αj < βj ≤ 1 we have

lim
T→∞

1
T

meas {τ ∈ (0, T ] : γ(τ) ∈ [α1, β1] × · · · × [αn, βn] mod 1} =
n∏

j=1
(βj − αj).

Lemma 3.1. Let γ(τ) be uniformly distributed mod 1 in Rn and X be a closed and Jordan 
measurable subregion of the unit cube in Rn. Suppose that Ω is a family of complex-valued 
continuous functions defined on X. If Ω is uniformly bounded and equivcontinuous, then, 
uniformly on Ω, we have

lim
T→∞

1
T

∫
AT

f({γ(τ)})dτ =
∫

· · ·
∫

X

f(x1, . . . , xn)
n∏

j=1
dxj ,

where AT denotes the set of τ ∈ (0, T ] such that γ(τ) ∈ X mod 1 and {γ(τ)} denotes 
the fractional part of γ(τ).

Proof. This is [8, Theorem A.8.3]. �
Moreover, we shall need the following result due to Mergelyan.

Theorem C (Mergelyan). Let K be a compact set with connected complement and f(s)
be continuous on K and analytic in the interior of K. Then, for every ε > 0, there exists 
a polynomial P (s) such that

max
s∈K

|f(s) − P (s)| < ε.

Proof. See [4, Chapter III]. �
Proof of Theorem 1.1. By Mergelyan’s theorem it suffices to assume that fa, fb are 
polynomials without zeros on K. Then we can find an admissible set U such that fa, fb
have no zeros on the closure of U and K ⊂ U ⊂ U ⊂ {s ∈ C : 1

2 < Re(s) < 1}.
Let us fix ε > 0. By Lemma 2.4, for any y > 0, there exists a finite set of primes M

containing all primes p ≤ y and the sequence θp, p ∈ M , such that

max
c∈{a,b}

max
s∈U

|ζM (s; cθp) − fc(s)| <
ε

2 .

Moreover, if

max
∥∥∥∥τ log p − θp

∥∥∥∥ < δ for sufficiently small δ, (7)

p∈M 2π
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then

max
c∈{a,b}

max
p∈M

∥∥∥∥τ c log p
2π − cθp

∥∥∥∥ < cδ,

and, by continuity,

max
c∈{a,b}

max
s∈U

|ζM (s + icτ ;0) − fc(s)| < ε; (8)

here 0 is the sequence of zeros and || · || denotes the distance to the nearest integer.
Put Q := {p : p ≤ z} for z > y such that M ⊂ Q and define the set

D := {(ωp)p∈Q : max
p∈M

‖ωp − θp‖ < δ}.

Next let us consider

S =
∑

c∈{a,b}

1
T

∫
AT

⎛
⎝∫∫

U

|ζ(s + icτ) − ζM (s + icτ ;0)|2 dσdt

⎞
⎠ dτ,

where T > 1 and AT is the set of τ ∈ [0, T ] satisfying (7).
By Cauchy–Schwarz inequality, we get S ≤ 2S1 + 2S2, where

S1 =
∑

c∈{a,b}

1
T

∫
AT

⎛
⎝∫∫

U

|ζQ(s + icτ,0) − ζM (s + icτ ;0)|2 dσdt

⎞
⎠ dτ

and

S2 =
∑

c∈{a,b}

1
T

∫
AT

⎛
⎝∫∫

U

|ζ(s + icτ) − ζQ(s + icτ ;0)|2 dσdt

⎞
⎠ dτ.

By the unique factorization of integers, the curve γ(τ) = (τ log p
2π )p∈Q is uniformly 

distributed modulo 1 on Rπ(z). Hence, by Lemma 3.1 and the fact that there is only 
restriction on ωp with p ∈ M in the definition of the set D, we have

lim
T→∞

1
T

∫
AT

∣∣∣∣ζQ
(
s,

(
τ
c log p

2π

))
− ζM

(
s;
(
τ
c log p

2π

))∣∣∣∣
2

dτ

=
∫

· · ·
∫

|ζM (s; (cωp))|2
∣∣ζQ\M (s; (cωp)) − 1

∣∣2 ∏
p∈Q

dωp
D
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≤
(

max
s∈U

|fc(s)| + ε

)2 ∫
· · ·

∫
D

∣∣ζQ\M (s; (cωp)) − 1
∣∣2 ∏

p∈Q

dωp


 m(D)
1∫

0

. . .

1∫
0

∣∣ζQ\M (s; (cωp)) − 1
∣∣2 ∏

p∈Q\M
dωp.

Moreover, by easy calculation and the fact that Q \ M contains only primes greater 
than y, one can show that

1∫
0

. . .

1∫
0

∣∣ζQ\M (s; (cωp)) − 1
∣∣2 ∏

p∈Q\M
dωp ≤

∑
n>y

1
n2σ , s = σ + it ∈ U.

Therefore, since σ > 1
2 for all s ∈ U , we have

S1 ≤ 1
4m(D)ε2

for sufficiently large y > 0.
Now, using the well-known estimate for the mean-square of the Riemann zeta function 

and Carlson’s theorem (see [8, Theorem A.2.10]) gives that

S2 ≤ 1
4m(D)ε2

for sufficiently large z > 0, and we have

S ≤ m(D)ε2.

On the other hand, we know that the sequence log p
2π , p ∈ Q, is linearly independent 

over Q, so by the Kronecker approximation theorem, we get

lim
T→∞

1
T

∫
AT

dτ = m(D).

Thus, by (8), one can show that the set of τ ∈ AT satisfying

max
c∈{a,b}

∫∫
U

|ζ(s + icτ) − fc(s)|2dσdt 
 ε2

has measure 	 T . Therefore, since approximation with respect to L2(U)-norm implies 
uniform approximation on K ⊂ U (see e.g. [4, Chapter I, Section 1, Lemma 1]), the 
proof is complete. �
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