期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:132
On representation of an integer as the sum of three squares and ternary quadratic forms with the discriminants p2, 16p2
Article
Berkovich, Alexander1  Jagy, William C.2 
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Math Sci Res Inst, Berkeley, CA 94720 USA
关键词: Ternary quadratic forms;    Sum of three squares;    Local densities;    Siegel-Weil formula;    Smith-Minkowski mass formula;    theta-function identities;    Watson's m-map;   
DOI  :  10.1016/j.jnt.2011.09.001
来源: Elsevier
PDF
【 摘 要 】

Let s(n) be the number of representations of n as the sum of three squares. We prove a remarkable new identity for s(p(2)n) - ps(n) with p being an odd prime. This identity makes nontrivial use of ternary quadratic forms with discriminants p(2), 16p(2). These forms are related by Watson's transformations. To prove this identity we employ the Siegel-Weil and the Smith-Minkowski product formulas. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2011_09_001.pdf 201KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次