期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:215
On the Siegel-Weil formula for classical groups over function fields
Article
Xiong, Wei1 
[1] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
关键词: Siegel-Weil formula;    Classical groups;    Function fields;    Theta integral;    Siegel Eisenstein series;    Reduction theory;   
DOI  :  10.1016/j.jnt.2020.01.007
来源: Elsevier
PDF
【 摘 要 】

We establish a Siegel-Weil formula for classical groups over a function field with odd characteristic, which asserts in many cases that the Siegel Eisenstein series is equal to an integral of a theta function. This is a function-field analogue of the classical result proved by A. Weil in his 1965 Acta Math. paper. We also give a convergence criterion for the theta integral by using Harder's reduction theory over function fields. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_01_007.pdf 720KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次