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0. Introduction

Let k be a global function field with char(k) �= 2, and let D be a quadratic field 
extension of k. Let G = U(n, n) be the quasi-split unitary group in 2n variables over D, 
and let H = U(V ) be the unitary group associated to a non-degenerate hermitian space 
V over D of dimension m and of Witt index r. In this paper, we study the Siegel-Weil 
formula for the pair (G, H). Let A be the ring of adeles of k, and let X = V n ∼= Mm×n(D). 
With some extra data, there is Weil representation ω of G(A) on the space S(X(A)) of 
Schwartz-Bruhat functions on X(A).

For Φ ∈ S(X(A)), define the theta integral

I(Φ) =
∫

H(A)/H(k)

∑
x∈X(k)

Φ(hx) dh,

where dh is the Haar measure on H(A) such that vol(H(A)/H(k)) = 1; and define the 
Siegel Eisenstein series

E(Φ) =
∑

γ∈P (k)\G(k)

ω(γ)Φ(0),

where P is the Siegel parabolic subgroup of G.
In this paper, we will establish a convergence criterion for the theta integral and 

prove a Siegel-Weil formula. More precisely, we will prove that the theta integral I(Φ) is 
absolutely convergent for any Φ ∈ S(X(A)) whenever r = 0 or m − r > n, and that the 
Siegel Eisenstein series E(Φ) is absolutely convergent for any Φ ∈ S(X(A)) whenever 
m > 2n; moreover, we will prove the following Siegel-Weil formula:

If m > 2n, then I(Φ) = E(Φ) for any Φ ∈ S(X(A)).

These results are analogues of those in [40]. We will also consider the cases where D
is a division algebra over k whose center is k or a quadratic field extension of k, and 
we will obtain similar results. We follow the approach in [40] to prove these results; in 
particular, we will make use of the reduction theory over function fields established in 
[8] and the theory of Eisenstein series over function fields in [27]. For the convergence 
criterion for the theta integral, we here take Weil’s approach in [40]. Note that for the 
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Siegel-Weil formula in this case, besides Weil’s approach in [40], other approaches are 
applicable, see for example [21] and [37].

The modern study of the Siegel-Weil formulas over number fields begins with the 
fundamental works of Weil in 1960s, and after the seminal works of Kudla and Rallis in 
1980s and 1990s, it has been well developed in recent years, with a major breakthrough 
made by Gan, Qiu, and Takeda in early 2010s. For this development, see for example 
[39], [32], [20], [21], [22], [16], [25], [36], [13], [14], [15], [17], [37], [4], [43], [42], [44], [45], 
and especially [5] and the references cited therein.

On the other hand, the Siegel-Weil formulas over function fields are only studied in 
some special cases to date. The first result on Siegel-Weil formulas over function fields 
is Haris’ pioneering work in 1974 ([10]). Thereafter only little relevant research has been 
done. Recently, F.-T. Wei ([38]) proved a Siegel-Weil formula for anisotropic quadratic 
forms over function fields.

In this paper, we consider the situation similar to that in [40], and we follow closely 
the strategy in [40] to prove the Siegel-Weil formula. In particular, many auxiliary results 
are proved following the methods in [40] with some necessary changes from number-field 
situation to function-field situation.

It is worth mentioning that Weil already had the function-field case in mind, and he 
had proved many preliminary results in [39] and [40]. But due to the lack of the reduction 
theory over function fields right then, he only considered the Siegel-Weil formula over 
number fields. Fortunately for our current purpose, the reduction theory for reductive 
algebraic groups over function fields has been established by Harder in late 1960s (see 
[8] or [35]). We emphasize that the reduction theory for reductive algebraic groups over 
function fields has played an essential role in establishing the convergence criteria for the 
theta integral and in the proof of the Siegel-Weil formula.

We give an overview of this paper in the following, specializing in the case where D
is a quadratic field extension of k, G = U(n, n) is the isometry group associated to a 
split skew-hermitian space of dimension 2n over D, and H = U(V ) is the isometry group 
associated to a non-degenerate hermitian space V over D of dimension m and of Witt 
index r. The hermitian form on V is denoted by ( , ) : V × V → D. We allow n = 0, 
which then means that G = {1} is the trivial one-element group.

In Section 1, we will give various notations and conventions used in this paper. We 
regard the function field k as a finite extension of the rational function field Fq(x) over the 
finite field Fq with q elements. We will introduce various algebraic groups over k. There is 
the Siegel parabolic subgroup P = NM of G, where N ∼= Hern is the unipotent radical 
and M ∼= ResD/kGLn is the Levi subgroup, here Hern(k) is the space of hermitian 
matrices of order n over D. Let A be the ring of adeles of k. We have an Iwasawa 
decomposition G(A) = P (A)G(OA) = N(A)M(A)G(OA), where OA =

∏
v Ov is the set 

of integral adeles with Ov being the ring of integers of the local field kv for any place v of k. 
Thus we can write any element g ∈ G(A) in the form g = n(b)m(a)g1 with n(b) ∈ N(A), 
m(a) ∈ M(A) with a ∈ GLn(DA) and g1 ∈ G(OA), and we let |a(g)| = | det(a)|DA

. 
We let X = V n = {(x1, . . . , xn) : xi ∈ V }, and define a mapping iX : X → Hern by 
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iX(x) = ((xi, xj)V ) for x = (x1, . . . , xn) ∈ X. For an integer r with 0 ≤ r ≤ n, define 
a subspace Xr of X by Xr = {(x1, . . . , xr, 0, . . . , 0) : xi ∈ V }. Then Xr

∼= V r and 
Xn = X. Let ψ be a non-trivial character of A/k and let χ be a Hecke character of D
satisfying χ|A× = εmD/k, where εD/k is the quadratic Hecke character of k associated to 
the quadratic extension D/k; then there is an associated Weil representation ω = ωψ,χ

of the adelic group G(A) on the space S(X(A)) of Schwartz-Bruhat functions on X(A).
In Section 2, we will formulate some results in reduction theory over function fields and 

prove some auxiliary lemmas (i.e. Lemmas 2.5, 2.6, 2.7). These lemmas are analogues of 
the results in [40, n. 11–13], and we will follow Weil’s method to prove them. In particular, 
we will make use of two big theorems in reduction theory, i.e. the compactness theorem 
and the fundamental set theorem. The results in this section are essential for what follows 
and will allow us to follow Weil’s strategy to prove the Siegel-Weil formula over function 
fields. We choose a place v0 of the function field k which lies above the place (x−1) of the 
rational function field Fq(x) and such that the residue field of k at v0 is Fq. The place v0
is an analogue of the real place in the number field case and will play the similar role. 
We choose and fix a uniformizer � of kv0 . Let T ∼= (Gm)r be a maximal split torus in H, 
where Gm = GL1 and r is the Witt index of V . We define a subgroup Θ(T ) ∼= Zr of T (A)
by Θ(T ) = {(aτ1 , . . . , aτr) : τi ∈ Z} via the isomorphism (Gm)r ∼= T , where aτ is the 
idele whose component at v0 is �τ and the other components are all equal to 1. Let P0 be 
a minimal k-parabolic subgroup of H which contains T , and let P0(A)1 be the subgroup 
of P0(A) formed of elements p such that |λ(p)|A = 1 for any k-rational character λ of 
P0. Then P0(A)1/P0(k) is compact by the compactness theorem in reduction theory, and 
we have P0(A)/P0(A)1 ∼= Θ(T ). Using the fundamental set theorem in reduction theory 
over function fields, we will show in Lemma 2.3 that there exists a compact subset C of 
H(A) such that

H(A) = C · Θ+ · P0(A)1 ·H(k),

where

Θ+ = {θ ∈ Θ(T ) : |α(θ)|A ≤ 1,∀α ∈ Δ},

and Δ is the set of simple roots of H relative to T . These results are analogues of 
some results in reduction theory over number fields as described in [40]. Next, we will 
follow Weil’s approach to use these results to study the convergence of theta integrals. 
In particular, we will show in Lemma 2.6 that the theta integral I(Φ) is absolutely 
convergent for any Φ ∈ S(X(A)) whenever the integral∫

Θ+

∏
λ

sup(1, |λ(θ)|−1
A )mλ · |ΔP0(θ)|−1

A dθ

is convergent, where λ runs through the characters of T appearing as the weights of the 
linear representation of H into Aut(X) given by x = (x1, . . . , xn) �→ hx = (hx1, . . . , hxn), 
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mλ is the multiplicity of λ, and ΔP0 is the algebraic module of P0 (note that |ΔP0(·)|−1
A

is the modular character of P0(A)). The proof of this result depends on Lemma 2.3 and 
the choice of the place v0.

In Section 3, we will study the Siegel Eisenstein series. For Φ ∈ S(X(A)) and s ∈ C, 
we define the Siegel Eisenstein series on G(A) by

E(g, s,Φ) =
∑

γ∈P (k)\G(k)

f
(s)
Φ (γg),

where f (s)
Φ (g) = |a(g)|s−s0ω(g)Φ(0) and s0 = (m − n)/2. We will show in Theorem 3.5, 

using Godement’s convergence criterion in the function field case as established in [27], 
that E(g, s, Φ) is absolutely convergent for all Φ whenever Re(s) > n/2; in particular, 
it follows that E(g, s, Φ) is holomorphic at s0 for all Φ whenever m > 2n. Assume 
m > 2n and write E(Φ) = E(1, s0, Φ) for Φ ∈ S(X(A)). Using the Bruhat decomposition 
G(k) = ∪n

r=0P (k)wrN(k), we can show that E =
∑n

r=0 EXr
, where EX0(Φ) = Φ(0), and 

for r ≥ 1, EXr
is given by

EXr
(Φ) =

∑
b∈Hern(k)

ω(wrn(b))Φ(0) =
∑

b∈Hern(k)

∫
Xr(A)

Φ(x)ψ(tr(x, x)b)dx.

In fact, if we identify V r with Xr via (x1, . . . , xr) �→ (x1, . . . , xr, 0, . . . , 0), we have

EXr
(Φ) =

∑
b∈Herr(k)

∫
V r(A)

Φ(x)ψ(tr(x, x)b)dx.

We will regard EXr
as coming from the pair (Gr, H), where Gr = U(r, r). Integrals of 

the form F ∗
Φ(b) :=

∫
X(A) Φ(x)ψ(tr(x, x)b)dx are studied in [40, n. 2]; and by using the 

results proved there, we can show that EX(Φ) =
∑

b∈Hern(k) F
∗
Φ(b) =

∑
b∈Hern(k) FΦ(b), 

where FΦ is the Fourier transform of F ∗
Φ. So we have EX =

∑
b∈Hern(k) μb, where μb

is given by μb(Φ) = FΦ(b) for Φ ∈ S(X(A)). Moreover, we can show as in [40] that 
each μb is given by the positive measure |θb|A determined by a gauge form θb on the 
variety U(b), where U(b) consists of points x = (x1, . . . , xn) in X of maximal rank and 
satisfying iX(x) := ((xi, xj)) = b. These results will be summarized as two theorems: 
Theorem 3.7 says that EX =

∑
b∈Hern(k) μb, where each μb is given by the positive 

measure |θb|A determined by a gauge form θb on the variety U(b); and Theorem 3.8 says 
that E = EX +

∑
0≤r≤n−1 EXr

, where each EXr
has the same form as EX .

In Section 4, we will prove some uniqueness theorems analogous to those in [40]. We 
say a positive measure is tempered if it is defined by a positive tempered distribution, 
and we identify a positive tempered measure with the positive tempered distribution 
used to define it. Let Ê be a tempered measure on X(A), invariant under G(k), and let 
Φ ∈ S(X(A)); then g �→ Ê(ω(g)Φ) is a continuous function on G(A), left invariant under 
G(k). We will give conditions for this function to be bounded on G(A), uniformly in Φ
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on every compact subset of S(X(A)); for this, we will use the results of the reduction 
theory formulated in Section 2 and Lemma 2.7. After giving these conditions, we will 
prove Theorem 4.5, which says that if m > 2n, then any positive measure E′ on X(A), 
which is invariant under G(k) and the local group Hv for a place v of k such that U(0)v
is non-empty, and such that E′ − E is a sum of measures supported by U(b)A for any 
b ∈ Hern(k), must be equal to E itself, where E is the positive tempered measure on 
X(A) given by the Siegel Eisenstein series E(Φ). Here we say, following Weil, that a 
measure on X(A) is supported by U(b)A if it is the image of a measure on U(b)A under 
jA, where jA is the canonical injection of U(b)A into X(A); for example, each μb as above 
is such a measure. The proof of this theorem is similar to that as in the number field 
case in [40].

Finally, in Section 5, we will give a convergence criterion for the theta integral, and 
prove the Siegel-Weil formula. For Φ ∈ S(X(A)), define the theta integral I(Φ) by

I(Φ) =
∫

H(A)/H(k)

∑
x∈X(k)

Φ(hx) dh,

where dh is the Haar measure on H(A) such that vol(H(A)/H(k)) = 1. We will show in 
Proposition 5.1 that the theta integral I(Φ) is absolutely convergent for any Φ ∈ S(X(A))
whenever r = 0 or m − r > n. By Lemma 2.6, it is sufficient to show that the integral∫

Θ+

∏
λ

sup(1, |λ(θ)|−1
A )mλ · |ΔP0(θ)|−1

A dθ

is convergent whenever r = 0 or m − r > n; and this can be achieved by direct computa-
tions. Note that if m > 2n, then both the theta integral I(Φ) and the Siegel Eisenstein 
series E(Φ) are absolutely convergent for any Φ ∈ S(X(A)), and hence give two positive 
tempered measures I and E on X(A). We will show in Theorem 5.3 that if m > 2n, then 
I = E and Ib = μb for every b ∈ Hern(k), where Ib is the measure on X(A) given by

Ib(Φ) =
∫

H(A)/H(k)

∑
ξ∈U(b)k

Φ(hξ) dh.

Here U(b)k is the set of elements x in X(k) of maximal rank and satisfying iX(x) = b. 
This theorem will be proved by induction on the restriction of Φ to Xr, following 
Weil’s approach. If n = 0, then X = {0} and G = {1}, and hence E(Φ) = Φ(0)
and I(Φ) = vol(H(A)/H(k)) · Φ(0); the desired results follow from the hypothesis 
vol(H(A)/H(k)) = 1. Now we assume that n ≥ 1 and that the results are valid for 
any r < n. We let IX =

∑
b∈Hern(k) Ib; then

IX(Φ) =
∫ ∑

ξ

Φ(hξ) dh,

H(A)/H(k)
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where ξ runs over the elements in X(k) which are of maximal rank. We define IXr

similarly for 0 ≤ r ≤ n − 1. Then I = IX +
∑

0≤r≤n−1 IXr
. Remember that Theorem 3.7

says EX =
∑

b∈Hern(k) μb and Theorem 3.8 says E = EX+
∑

0≤r≤n−1 EXr
. The induction 

hypothesis implies that IXr
= EXr

for 0 ≤ r ≤ n − 1; thus I = IX + E − EX , and 
I − E = IX − EX =

∑
b∈Hern(k) Ib −

∑
b∈Hern(k) μb. Note that the measures μb are 

supported by U(b)A, and it can be shown as in [40] that the measures Ib are also so. 
Therefore the positive tempered measure I has the property stated in Theorem 4.5 and is 
hence equal to the measure E, and thus IX = EX . Since Ib and μb are the restrictions of 
IX and of EX to the set i−1

X ({b}) respectively, it follows that Ib = μb for any b ∈ Hern(k). 
The desired results are thus proved.

More generally, we will consider the cases where D is a finite dimensional division 
algebra over k equipped with an involution ξ �→ ξ̄, whose center is either k or a quadratic 
field extension of k. We consider similar spaces and groups over k as above.

Let η = ±1. We consider the space W = M1×2n(D) of row vectors of length 2n over 
D, equipped with a non-degenerate (−η)-hermitian form 〈 , 〉 : W ×W → D given by

〈x, y〉 = x

(
0 1n

−η · 1n 0

)
tȳ,

where 1n is the identity matrix of size n; and we consider the space V = Mm×1(D) of 
column vectors of length m over D, equipped with a non-degenerate η-hermitian form 
( , ) : V × V → D.

Consider the isometry groups G of W and H of V respectively. For example, if D = k

and η = 1, then W is a non-degenerate symplectic space over k and V is a non-degenerate 
quadratic space over k, and G = Sp(W ) is the associated symplectic group, H = O(V )
is the associated orthogonal group. We will consider the Siegel-Weil formula for the pair 
(G, H), and we will obtain similar results as above. But we want to give a remark. If 
D = k, η = 1 and m is odd, then the Weil representation applies only to the two-fold 

metaplectic cover ˜Sp(W )(A) of Sp(W )(A) and not to the group Sp(W )(A), and in this 
case we have to consider the Siegel-Weil formula for ( ˜Sp(W ), O(V )). Note that in any 
other case the Weil representation applies to the isometry group G.

1. Notation and preliminaries

In this section, we introduce the notation and preliminaries used in this paper.
Let q be a power of an odd prime number and let Fq be the finite field of order q. Let 

k be a function field in one variable over Fq, such that Fq is algebraically closed in k. 
Note that char(k) �= 2 since q is odd.

Let Fq[x] be the polynomial ring in one indeterminate over Fq, with fraction field 
Fq(x), and we regard k as a finite separable extension of Fq(x).

Let Ok be the ring of integers of k, which is the integral closure of Fq[x] in k; it is a 
Dedekind domain.
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A place of k is an equivalence class of nontrivial absolute values on k. The “infinite 
place” (x−1) of Fq(x) is defined by the absolute value given by |f/g| = qdeg(f)−deg(g) for 
f, g ∈ Fq[x]. See §4.4 of [33] for more details.

For a place v of k, let kv be the completion of k at v (called a local field), Ov be the 
ring of integers in kv, pv be the maximal ideal of Ov, Fv be the residue field at v, and 
let qv be the order of the residue field Fv.

Let A be the ring of adeles of k, and let A× be the group of ideles of k. Let OA =∏
v Ov, where v runs over the places of k.
We fix a place v0 of k which lies above the “infinite place” (x−1) of Fq(x) and such 

that the residue field of k at v0 is Fq.
We fix an algebraically closed field extension Ω of k, called the universal domain.
Let D be a finite dimensional division algebra over k equipped with an involution 

ξ �→ ξ̄. Let K be the center of D. We assume that the subfield of K formed of elements 
invariant under the involution is k. Then K is either k or is a quadratic field extension 
of k.

Let α2 be the dimension of D over K.
Let η = ±1. Let δ be the dimension of D over k, and let δ′ be the dimension over k

of the space of elements ξ of D such that ξ̄ = ηξ, and let ε = δ′/δ.
Then

ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if D = k and η = −1;
1
4 if D is a division quaternion algebra over k and η = 1;
1
2 if the center K of D is a quadratic extension of k;
3
4 if D is a division quaternion algebra over k and η = −1;
1 if D = k and η = 1.

Note that [K : k] = 2 if and only if ε = 1/2, and K = k otherwise. See [40, n. 27].
For a positive integer d, let Md(D) be the additive group of square matrices over D

of order d. Then Md(D) is a central simple algebra over K.
Let νK : Md(D) → K be the reduced norm, and let ν = NK/k◦νK . Let τK : Md(D) →

K be the reduced trace, and let τ = trK/k ◦ τK . Note that for x ∈ K, νK(x) = xα, where 
α2 = [D : K]. See p. 169 of [41].

For a matrix x = (xij) over D, let x̄ = (x̄ij) be the conjugate of x, and let tx = (xji)
be the transpose of x. We often write x∗ for the conjugate transpose of x, i.e. x∗ = tx̄.

Let n ≥ 0 be an integer. Let W = M1×2n(D), and equip it with an (−η)-hermitian 
form 〈 , 〉 : W ×W → D given by

〈x, y〉 = x

(
0 1n

−η · 1n 0

)
y∗

for x, y ∈ W . In this case, we say W is a split (−η)-hermitian space.
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Let

G = {g ∈ GL(W ) : 〈xg, yg〉 = 〈x, y〉,∀x, y ∈ W}

be the isometry group of W .
Then

G(k) = {g ∈ GL2n(D) : g
(

0 1n
−η · 1n 0

)
g∗ =

(
0 1n

−η · 1n 0

)
}.

We have the Siegel parabolic subgroup P = NM of G = U(W ), where the Levi 
subgroup M is given by

M(k) = {m(a) =
(
a 0
0 (a∗)−1

)
: a ∈ GLn(D)},

and the unipotent radical N is given by

N(k) = {n(b) =
(

1n b
0 1n

)
: b ∈ Hern(k)},

where

Hern(k) = {b ∈ Mn(D) : b∗ = η · b}

is the space of η-hermitian matrices of order n over D.
We have the Bruhat decomposition:

G(k) =
n⋃

r=0
P (k)wrP (k) =

n⋃
r=0

P (k)wrN(k),

where

wr =

⎛⎜⎝1n−r 0
0 1r

0 1n−r

−η · 1r 0

⎞⎟⎠ .

Let m be a positive integer. Let V = Mm×1(D), and equip it with an η-hermitian 
form ( , ) : V × V → D given by

(x, y) = x∗ ·Q · y,

where Q is an invertible element of Mm(D) such that Q∗ = η ·Q (i.e. η-hermitian).
Denote the Witt index of V by r, i.e. r is the dimension over D of a maximal totally 

isotropic subspace of the η-hermitian space V . We also say the η-hermitian matrix Q is 
of Witt index r.
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Let

H = {h ∈ GL(V ) : (hx, hy) = (x, y),∀x, y ∈ V }

be the isometry group of V .
Then

H(k) = {h ∈ GLm(D) : h∗ ·Q · h = Q}.

If ε = 0, then G = O(W ) = O(n, n) is the orthogonal group associated to the split 
quadratic space W , and H = Sp(V ) = Sp(m) is the symplectic group associated to 
the symplectic space V . If ε = 1/4, then G is the quaternionic unitary group associated 
to the split quaternionic skew-hermitian space W , and H is the quaternionic unitary 
group associated to the quaternionic hermitian space V . If ε = 1/2, then we may assume 
η = 1 by replacing an η-hermitian matrix Q by ξQ, where ξ is some element in K such 
that ξξ̄ = η which exists by Hilbert’s Theorem 90, and then G is the unitary group 
associated to the split skew-hermitian space W , and H is the unitary group associated 
to the hermitian space V . If ε = 3/4, then G is the quaternionic unitary group associated 
to the split quaternionic hermitian space W , and H is the quaternionic unitary group 
associated to the quaternionic skew-hermitian space V . If ε = 1, then G = Sp(2n) is the 
symplectic group associated to the symplectic space W , and H = O(V ) is the orthogonal 
group associated to the quadratic space V .

Let X = Mm×n(D) be the additive group of m × n matrices over D (except in 
Section 2, where we allow X to be an arbitrary vector space over k). We write an 
element x of X = Mm×n(D) in the form x = (x1, . . . , xn), where each xi ∈ Mm×1(D). 
Then X = V n with V = Mm×1(D). We can regard X as a left module over Mm(D) of 
rank n.

For 0 ≤ r ≤ n, let Xr be the subspace of X consisting of elements of the form 
(x1, . . . , xr, 0, . . . , 0). In particular, X0 = 0 and Xn = X.

The group H acts on X via h · (x1, . . . , xn) = (h · x1, . . . , h · xn), where xi ∈ V =
Mm×1(D).

Let W = V ⊗D W , and equip it with a symplectic form over k given by

〈〈 , 〉〉 = κ · trD/k(( , ) ⊗ 〈 , 〉),

where

κ =
{

2 if D = k,

1 otherwise.

Note that we have followed the notation on p. 279 of [23], so the κ here is twice of that 
on p. 364 of [18] or that on p. 950 of [11].



62 W. Xiong / Journal of Number Theory 215 (2020) 52–97
Let

Sp(W ) = {u ∈ GL(W ) : 〈〈xu, yu〉〉 = 〈〈x, y〉〉,∀x, y ∈ W }

be the symplectic group associated to the symplectic space W . Note that Sp(W ) acts 
on W on the right.

Then (G, H) is a reductive dual pair of type I in Sp(W ) in Howe’s sense ([12, n. 5]).
There is a natural homomorphism

ι : G → Sp(W )

given by (v ⊗ w)ι(g) = v ⊗ wg for v ∈ V , w ∈ W and g ∈ G.
Let iX : X → Hern be the mapping given by iX(x) = (x, x) := ((xi, xj)) for x =

(x1, . . . , xn) ∈ X with each xi ∈ V .
When b belongs to Hern(k), the set i−1

X ({b}), on the universal domain Ω, is a k-closed 
subset of X(Ω). We denote by U(b) the set of points of maximal rank of this set; it is 
a k-open subset of i−1

X ({b}). Thus U(b)k is the set of points x in X(k) of maximal rank 
and satisfying iX(x) = b.

For an algebraic group G over k and for a k-algebra A, we write G(A) (or GA) for 
the group of A-points. In particular, for a place v of k, we often write Gv = G(kv), and 
write Go

v = G(Ov) whenever G is defined over Ov. For example, we write DA = D⊗k A, 
KA = K ⊗k A, and X(A) = X ⊗k A.

For a place v of k, let | · |v be the absolute value on kv, and let | · |A =
∏

v | · |v be the 
adelic absolute value on A.

Define the adelic absolute value on KA by |x|KA
= |NK/k(x)|A for x ∈ KA.

Let ˜G(A) be the two-fold metaplectic cover of G(A) if ε = 1 and m is odd, and let 
˜G(A) = G(A) otherwise. Note that if ε = 1 and m is odd, then W is a symplectic space 

and G = Sp(W ) is the associated symplectic group, and ˜G(A) = G(A) × {±1} with 
group multiplication given by

(g1, z1) · (g2, z2) = (g1g2, z1z2c̃(g1, g2))

where c̃(g1, g2) is Rao’s normalized {±1}-valued cocycle defined locally as in Thm. 5.3 

on p. 361 of [34]; and we can embed G(k) and N(A) into ˜G(A) via g �→ (g, 1).
Let π : ˜G(A) → G(A) be the canonical projection. Let ˜P (A) = π−1(P (A)), and let 

˜M(A) = π−1(M(A)). Note that ˜P (A) = N(A)˜M(A), where N(A) can be embedded 

into ˜P (A) via n(b) �→ (n(b), 1).
For the group G, there is an Iwasawa decomposition G(A) = N(A)M(A)G(OA). Let 

˜G(OA) = π−1(G(OA)); then ˜G(A) = N(A)˜M(A) ˜G(OA).
For g ∈ G(A), write g = n(b)m(a)g1 with n(b) ∈ N(A), m(a) ∈ M(A) and g1 ∈

G(OA), and let |a(g)| = |νK(a)|KA
= |ν(a)|A. For g̃ = (g, ζ) ∈ ˜G(A), let |a(g̃)| = |a(g)|.

Fix a non-trivial additive character ψ : A/k → C×.
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We identify Hern(A) with its Pontryagin dual via ψ:

[b1, b2] �→ ψ(κ2 · τ(b1b2)), for b1, b2 ∈ Hern(A).

For the local groups Sp(W )v and the adelic group Sp(W )A, there are associated 
metaplectic groups Mp(W )v and Mp(W )A:

1 → C1 → Mp(W )v → Sp(W )v → 1,

1 → C1 → Mp(W )A → Sp(W )A → 1,

here C1 = {z ∈ C : zz̄ = 1}. See [39, n. 34, 37] and [34].
The local metaplectic group Mp(W )v can be identified with the set Sp(W )v × C1

equipped with a group multiplication

(g1, z1) · (g2, z2) = (g1g2, z1z2 · cv(g1, g2)),

where cv(g1, g2) is Rao’s cocycle as in Thm. 4.1 on p. 358 of [34].
Similarly, the adelic metaplectic group Mp(W )A can be identified with the set 

Sp(W )A ×C1 equipped with a group multiplication

(g1, z1) · (g2, z2) = (g1g2, z1z2 · c(g1, g2)),

where c(g1, g2) =
∏

v cv(g1v, g2v).
For the non-trivial additive character ψ : A/k → C×, there is an associated Weil 

representation ωψ of Mp(W )A on S(X(A)) given by

ωψ(g, z) = z · rψ(g),

where

rψ(g) = ⊗rψv
(gv)

and rψv
(gv) is defined as in Thm. 3.5 on p. 355 of [34].

Now we fix a Hecke character χ of K as follows. Recall K is the center of D, and K
is a quadratic field extension of k if ε = 1/2, and K = k otherwise.

If ε = 0 or 1
4 , let χ be the trivial character of A×.

If ε = 1
2 , let χ be a unitary character of K×

A/K× with χ|A× = εαmK/k, where εK/k is the 
quadratic Hecke character of k associated to the quadratic field extension K/k by class 
field theory, and α2 is the dimension of D over its center K.

If ε = 3
4 , let χ be the quadratic character of A×/k× given by

χ(x) =
∏

(xv, (−1)m detV )v,

v
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where detV ∈ k×/k×2 is the reduced norm of the matrix ((ei, ej))1≤i,j≤m for any basis 
{e1, . . . , em} of V over D.

If ε = 1, let χ be the quadratic character of A×/k× given by

χ(x) =
∏
v

(xv, (−1)m(m−1)/2 detV )v,

where (, )v is the Hilbert symbol for kv, and detV ∈ k×/k×2 is the determinant of the 
matrix ((ei, ej))1≤i,j≤m for any basis {e1, . . . , em} of V over k.

We regard χ as a character of ˜P (A) as follows. If ε = 1 and m is odd, then ˜P (A) is 
a double cover of P (A), and we let χ((n(b)m(a), z)) = z · χ(det a) ·

∏
v γv(det av, ψv)−1, 

where for a character η on the local field kv and for α ∈ k×v , γv(α, η) = γv(αη)
γv(η) , where 

αη is the character x �→ η(αx), and γv(η) is the Weil index of the character of second 

degree x �→ η(x2) on kv ([34, Appendix]). If ε �= 1 or m is even, then ˜P (A) = P (A), and 
we let χ(n(b)m(a)) = χ(νK(a)).

With the help of χ, there is a splitting ι̃χ : ˜G(A) → Mp(W )A given as follows.
If ε = 1 and m is odd, then ˜G(A) is a double cover of G(A), and the splitting is given 

by

ι̃χ : ˜G(A) → Mp(W )A,

(g, z) �→ (ι(g), zβχ(g)),

where βχ(g) =
∏

v βχv
(gv) ∈ C1 with βχv

(gv) defined as in Thm. 3.1 on p. 378 of 
[18]. Note that for g1, g2 ∈ G(A), c(ι(g1), ι(g2))βχ(g1g2)−1βχ(g1)βχ(g2) = c̃(g1, g2)m =
c̃(g1, g2), since m is odd and c̃(g1, g2) ∈ {±1}. See [18, p. 379].

If ε �= 1 or m is even, then ˜G(A) = G(A), and the splitting is given by

ι̃χ : G(A) → Mp(W )A,

g �→ (ι(g), βχ(g)),

where βχ(g) =
∏

v βχv
(gv) ∈ C1 with βχv

(gv) defined as in Thm. 3.1 on p. 378 of [18].
Then the Weil representation ω of G̃(A), associated to the data (ψ, χ), is defined to 

be

ω = ωψ,χ := ι̃χ ◦ ωψ.

If ε �= 1 or m is even, then ˜G(A) = G(A), and the Weil representation is given explicitly 
as follows:

ω(m(a))Φ(x) = χ(m(a))|ν(a)|
αm
2

A Φ(xa),

ω(n(b))Φ(x) = ψ(qb(x))Φ(x),
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ω(wn)Φ(x) =
∫

X(A)

Φ(y)ψ(κ · τ((x, y))) dy,

ω(wr)Φ(x) =
∫

X′′(A)

Φ(x′ + z)ψ(κ · τ((x′′, z))) dz,

for Φ ∈ S(X(A)), m(a) ∈ M(A), n(b) ∈ N(A), x = x′ + x′′ ∈ X(A) with 
x′ ∈ X ′(A) and x′′ ∈ X ′′(A), where X ′ = {(x1, . . . , xn−r, 0, . . . , 0)} and X ′′ =
{(0, . . . , 0, xn−r+1, . . . , xn)}. Here

• χ(m(a)) = χ(νK(a));
• α2 is the dimension of D over its center K;
• νK : Mn(D) → K is the reduced norm;
• τ = NK/k ◦ τK , where τK : Mn(D) → K is the reduced trace;
• qb(x) = κ

2 · τ((x, x)b), where κ = 2 if D = k and κ = 1 otherwise;
• (y, x) = ((yi, xj)) ∈ Hern(A) for y = (y1, . . . , yn) and x = (x1, . . . , xn) in X(A);
• dy is the self-dual Haar measure on X(A).

If ε = 1 and m is odd, then ˜G(A) is a double cover of G(A), and the action of (m(a), ζ) ∈
˜M(A) is given by

ω((m(a), z))Φ(x) = χ((m(a), z))|det a|
m
2
A Φ(xa),

where χ((m(a), z)) = z · χ(det a) ·
∏

v γv(det av, ψv)−1. The actions of u(b) ∈ N(A) and 

wr are the same as above, once we embed N(A) and G(k) into ˜G(A) via g �→ (g, 1).
The Weil representation of the group H(A) on S(X(A)) is given linearly: ω(h)Φ(x) =

Φ(h−1x), where for x = (x1, . . . , xn) with each xi ∈ V (A), h−1x = (h−1x1, . . . , h−1xn).
For the above formulas, see for example [18, p. 400], [19, p. 38] and [23, p. 280] in the 

local case. Note that in the references [34], [19] and [23] the base field is assumed to be 
of odd characteristic, so the usual actions of the Weil representation in the characteristic 
zero case are also valid in the odd characteristic case.

Let Gm = GL1 be the multiplicative group in one variable over k.
For a locally compact group G, its modular character δG : G → R+ is defined by

dμ(gx) = δG(x)−1dμ(g)

for a left Haar measure μ on G.
For a connected algebraic group U over k, its algebraic module ΔU is a k-rational 

character such that

ω(a−1xa) = ΔU (a)ω(x),



66 W. Xiong / Journal of Number Theory 215 (2020) 52–97
where ω is any gauge form on U (see [40, p. 11]). It is easy to check, using the measures 
determined by the gauge forms, that the modular character of the adelic group U(A)
can be expressed by the algebraic module ΔU of U as follows:

δU(A)(g) = |ΔU (g)|−1
A .

Finally, we say a few words about measures and distributions. We follow the conven-
tion on p. 3 of [40] and say a positive measure is tempered if it is defined by a positive 
tempered distribution via the Riesz representation theorem. We identity a positive tem-
pered measure with the positive tempered distribution which is used to define it, and 
vice versa.

2. Analytic preliminaries

In this section, we will formulate some results in Harder’s reduction theory over func-
tion fields ([8,9]), and prove some auxiliary lemmas analogous to those in [40].

Throughout this section, we let G be either G or H, and let G0 be the identity com-
ponent of G. By changing the sign of η if necessary, we can always assume that G = H, 
where H is the isometry group of a non-degenerate η-hermitian space V over D, and we 
assume that V is of dimension m and of Witt index r.

Let T ∼= (Gm)r be a maximal split torus in G0 given as follows. We may assume by 
choosing a suitable basis of V that the η-hermitian form on V is given by the matrix

Q =

⎛⎝ 0 0 1r
0 Q0 0

η · 1r 0 0

⎞⎠ ,

where Q0 is the matrix (of order m − 2r) of an anisotropic η-hermitian form. For t =
(t1, . . . , tr) ∈ (Gm)r, denote by d(t) the diagonal matrix of order m whose diagonal 
elements are

(t1, . . . , tr, 1, . . . , 1, t−1
1 , . . . , t−1

r ).

Then d is an isomorphism of (Gm)r onto a maximal split torus T of G0.
Recall we have fixed a place v0 of k such that the residue field of kv0 is Fq, and we let 

� be a uniformizer at v0.
Motivated by the constructions on p. 19 of [26, § I.2.1.], we proceed as follows. For 

τ ∈ Z, define an element aτ ∈ A× whose component at v0 is �τ and the component at 
any other place is 1. In particular, |aτ |A = q−τ .

Let

Θ(T ) = {(aτ1 , . . . , aτr) : τi ∈ Z},

and regard Θ(T ) as a subset of T (A) via (Gm)r ∼= T .
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For example, Θ(Gm) = {aτ : τ ∈ Z} ∼= Z.
Let P0 be a minimal k-parabolic subgroup of G0 which contains T . Then G0/P0 is 

isomorphic to a projective variety over k, and hence G0(A)/P0(A) ∼= (G0/P0)(A) is 
compact. Note that G(A)/G0(A) is compact (see [3, p. 571, Prop. 3.2.1]), and it follows 
that G(A)/P0(A) is also compact.

Let

P0(A)1 = {p ∈ P0(A) : |λ(p)|A = 1,∀λ ∈ Xk(P0)},

where Xk(P0) is the group of k-rational characters of P0.
We can define T (A)1 and G0(A)1 similarly. Note that Xk(G0) = {1}, so G0(A)1 =

G0(A), whence G0(A)/G0(k) is of finite volume for any Haar measure (see [8] or [29, 
p. 25]). Since G(A)/G0(A) is compact, it follows that G(A)/G(k) is also of finite volume 
for any Haar measure.

By the compactness theorem in reduction theory (see [8, p. 46, Korollar 2.2.7] or [35, 
p. 212]), we know that P0(A)1/P0(k) is compact.

Moreover, we have the following result, which is a generalization of the classical result 
A×/A×,1 ∼= Θ(Gm), and there is an analogue on [40, p. 17] in the number field case.

Lemma 2.1. P0(A)/P0(A)1 ∼= Θ(T ).

For c ∈ R, let

Θ(c) = {θ ∈ Θ(T ) : |α(θ)|A ≤ qc,∀α ∈ Δ},

where Δ is the set of simple roots of G0 relative to T , which is given by

Δ = {xi − xi+1 : 1 ≤ i ≤ r − 1} ∪ {2xr},

where xi(t) = ti for t = (t1, . . . , tr) ∈ T . See for example [40, p. 76].
It is easy to verify the following result.

Lemma 2.2. For c ∈ R, we have

Θ(c) = {(aτ1 , aτ2 , . . . , aτr) ∈ Θ(T ) : −c/2 ≤ τr ≤ τr−1 + c ≤ . . .

≤ τ2 + (r − 2)c ≤ τ1 + (r − 1)c}.

In particular,

Θ(0) = {(aτ1 , aτ2 , . . . , aτr) ∈ Θ(T ) : 0 ≤ τr ≤ τr−1 ≤ . . . ≤ τ2 ≤ τ1}.

Moreover, for any c, we have

Θ(c) = (a−(2r−1)c/2, a−(2r−3)c/2, . . . , a−3c/2, a−c/2) · Θ(0).
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For c ∈ R, let

T (c) = {t ∈ T (A) : |α(t)|A ≤ qc,∀α ∈ Δ}.

Then it is easy to see that T (c) = Θ(c) · T (A)1.
The fundamental set theorem in reduction theory (see for example [35, pp. 211–212]) 

claims that there is a compact subset C0 of G0(A) and a constant c ∈ R such that

G0(A) = C0 · T (c) · P0(A)1 · G0(k).

Now since G(A)/G0(A) is compact ([3, Prop. 3.2.1]), there exists a compact subset C1
of G(A) such that G(A) = C1 · G0(A), whence

G(A) = C1 · C0 · T (c) · P0(A)1 · G0(k).

Taking C = C1 · C0, which is a compact subset of G(A), we obtain the fundamental set 
theorem for G:

G(A) = C · T (c) · P0(A)1 · G(k).

Furthermore, we have the following results analogous to those in [40, n. 10].

Lemma 2.3. (i) There exists a compact subset C of G(A) such that

G(A) = C · Θ(0) · P0(A)1 · G(k).

(ii) Suppose G is the isometry group of a split η-hermitian space V . Then there exists a 
compact subset C1 of G(A) such that

G(A) = C1 · T (0) · G(k).

Proof. (i) It is easy to check that

T (c) · P0(A)1 = Θ(c) · P0(A)1.

Thus it follows from the fundamental set theorem for G that there is a compact subset 
C of G(A) and a constant c such that

G(A) = C · Θ(c) · P0(A)1 · G(k).

Replacing C with C · (a−(2r−1)c/2, a−(2r−3)c/2, . . . , a−3c/2, a−c/2), we may always assume 
that c = 0.

(ii) In this case, G0 is quasi-split, and we can take P0 to be a Borel subgroup such 
that T is its Levi subgroup. The desired result then follows from (i). �
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Now we need the following result, which is an analogue of Lem. 1 on p. 217 of [6] in 
the number field case.

Lemma 2.4. If C is a compact subset of P0(A), then the union of θCθ−1 for θ ∈ Θ(0) is 
relatively compact in P0(A), i.e. its closure is compact in P0(A).

Proof. We follow Godement’s method.
Note that P0 = Z(T ) ·U , where Z(T ) (the centralizer of T in G0) is the Levi subgroup 

of P0 and U is the unipotent radical of P0. Moreover, the Lie algebra Lie(U) of U is 
given by

Lie(U) =
⊕
α∈Φ+

gα,

where Φ+ is the set of positive roots of G0 relative to T , g is the Lie algebra of G0, and 
gα = {X ∈ g : Ad(t)X = α(t)X, ∀t ∈ T} is the root space. See [1, p. 234].

Take p ∈ C and θ ∈ Θ(0). Then p and θpθ−1 are equal at any place other than v0. 
Thus it suffices to assume everything is at the place v0. Write p = zu, where z belongs 
to a compact subset of Z(T )v0 and u belongs to a compact subset of Uv0 . As θpθ−1 =
z · θuθ−1, it suffices to consider θuθ−1. Note that similar to the exponential map in the 
characteristic-zero case, there is a T -equivariant isomorphism e of Lie(U) onto U (see 
[1, p. 184]). Write u = e(X), where X ∈ Lie(U) = ⊕α∈Φ+gα. It suffices to show that 
if X stays in a fixed compact subset of Lie(U)v0 , then so is Ad(θ)X. It comes down to 
assuming X ∈ gα,v0 , and then Ad(θ)X = α(θ)X. But α(θ) is a monomial with positive 
integer exponents in αi(θ), where {αi} ⊂ Φ+ is the set of simple roots, thus remains 
bounded on Θ(0) ∩ Tv0 . The desired result follows. �

Let dg be a Haar measure on G(A). To study the convergence of integrals on 
G(A)/G(k), we will rely on the following lemma, which is an analogue of Lem. 4 on 
p. 18 of [40, n. 11]. Let ΔP0 be the algebraic module of P0. We write Θ+ = Θ(0) and 
P0(A)+ = Θ+ · P0(A)1.

Lemma 2.5. There exists a compact subset C0 of G(A) and a constant γ > 0 such that∫
G(A)/G(k)

|F (g)|dg ≤ γ

∫
Θ+

F0(θ) · |ΔP0(θ)|−1
A dθ (2.1)

whenever F, F0 are locally integrable functions on G(A)/G(k) and on Θ+ respectively, 
such that |F (cθ)| ≤ F0(θ) for all c ∈ C0 and θ ∈ Θ+.

Proof. By Lemma 2.3, there exists a compact subset C of G(A) such that G(A) =
C · P0(A)+ · G(k). Denote by I the first member of (2.1), and by ϕN the characteristic 
function of the set N = C · P0(A)+. We have
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I ≤
∫

N/P0(k)

|F (g)|dg =
∫

G(A)/P0(k)

|F (g)|ϕN (g) dg. (2.2)

We will transform the last integral by means of the theory of quasi-invariant measures 
on homogeneous spaces (see [2], Chap. VII, §2, n. 5-8). According to this theory, we 
can construct a continuous function h on G(A), everywhere > 0, such that h(gp) =
h(g)|ΔP0(p)|A for all g ∈ G(A), p ∈ P0(A), and then a positive measure λ on G(A)/P0(A)
such that for every locally integrable function f ≥ 0 on G(A)/P0(k), we have:

∫
G(A)/P0(k)

f(g) dg =
∫

G(A)/P0(A)

⎛⎜⎝h(g)
∫

P0(A)/P0(k)

f(gp) d′p

⎞⎟⎠ dλ(ġ),

where ġ is the image of g ∈ G(A) in G(A)/P0(A) and d′p = |ΔP0(θ)|−1
A dθ dp1 is the 

right invariant measure on P0(A) = Θ(T ) · P0(A)1, where dθ, dp1 are Haar measures on 
Θ(T ) and on P0(A)1 respectively. Applying this formula to the last member of (2.2), we 
obtain

I ≤
∫

G(A)/P0(A)

Ψ(ġ) dλ(ġ),

where Ψ is the function defined by

Ψ(ġ) = h(g)
∫

P0(A)/P0(k)

|F (gp)|ϕN (gp) d′p.

Since G(A)/P0(A) is compact, there is a compact subset C1 of G(A) such that G(A) =
C1 · P0(A). We can therefore assume that g ∈ C1 in the second member of the above 
formula. But then we have ϕN (gp) = 0 when p /∈ C−1

1 N . Put

Q = C−1
1 N ∩ P0(A) = (C−1

1 C ∩ P0(A)) · P0(A)+ = (C−1
1 C ∩ P0(A)) · Θ+ · P (A)1;

let γ1 be the supremum of h on C1, and let F1(p), for each p ∈ P0(A), be the supremum 
of |F (gp)| for g ∈ C1. Therefore

Ψ(ġ) ≤ γ1

∫
Q/P0(k)

|F (gp)|d′p ≤ γ1

∫
Q/P0(k)

F1(p) d′p,

and consequently, since G(A)/P0(A) is compact, we have

I ≤ γ2

∫
F1(p) d′p
Q/P0(k)
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provided that the constant γ2 is suitably chosen.
By Lemma 2.1, we can identify P0(A)/P0(A)1 with Θ(T ). Then it is immediate that 

every compact subset of Θ(T ) is contained in a set of the form θ0Θ+, with θ0 ∈ Θ(T ). 
Applying this remark to the image of C−1

1 C ∩ P0(A) in P0(A)/P0(A)1 = Θ(T ), we 
conclude that there exists θ0 ∈ Θ(T ) such that Q is contained in θ0Θ+ · P0(A)1. On the 
other hand, since P0(A)1/P0(k) is compact by the compactness theorem, there exists 
a compact subset C2 of P0(A)1 such that P0(A)1 = C2 · P0(k), so we obtain Q ⊂
θ0Θ+ · C2 · P0(k), and consequently

I ≤ γ2

∫
θ0Θ+·C2

F1(p) d′p.

Since d′p = |ΔP0(θ)|−1
A dθ dp0, this can also be written as

I ≤ γ2

∫
C2

⎛⎝∫
Θ+

F1(θ0θp0) · |ΔP0(θ0θ)|−1
A dθ

⎞⎠ dp0.

Let C3 be the closure of the union of θC2θ
−1 for θ ∈ Θ+, which is a compact subset 

of P0(A)1 by Lemma 2.4. Note that θC2θ
−1 ⊂ C3, and therefore θ0θC2 ⊂ θ0C3θ for 

any θ ∈ Θ+. Thus if we denote by F2(θ), for any θ ∈ Θ+, the supremum of F1(pθ) for 
p ∈ θ0C3, then we obtain

I ≤ γ

∫
Θ+

F2(θ) · |ΔP0(θ)|−1
A dθ

provided that the constant γ is suitably chosen. It follows that the assertion of the lemma 
is verified if we take C0 = C1θ0C3. �

Now let X be an affine space on which G acts via a representation ρ of G in Aut(X). 
For every character λ of T , we denote by mλ the dimension over k of the space of vectors 
a ∈ Xk such that ρ(t)a = λ(t)a for any t ∈ T . The characters λ of T for which mλ > 0
are the weights of the representation ρ; mλ is the multiplicity of the weight λ.

We have the following analogue of Lem. 5 on p. 20 of [40, n. 12].

Lemma 2.6. Let ρ be a representation of G in the group Aut(X) of automorphisms of an 
affine space X. Then the integral

I(Φ) =
∫

G(A)/G(k)

∑
ξ∈X(k)

Φ(ρ(g)ξ) · dg (2.3)

is absolutely convergent for any function Φ ∈ S(X(A)) whenever the integral
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∫
Θ+

∏
λ

sup(1, |λ(θ)|−1
A )mλ · |ΔP0(θ)|−1

A dθ

is convergent, where λ runs over the weights of ρ; and when this is so, I(Φ) defines a 
positive tempered measure I. Here we follow the convention on [40, p. 3] and identify a 
positive tempered distribution on X(A) with a positive measure on X(A).

Proof. If I(Φ) is absolutely convergent for any function Φ ∈ S(X(A)), then Lem. 5 on 
p. 194 of [39, n. 41] shows that I(Φ) converges uniformly on every compact subset of 
S(X(A)), whence it follows, according to Lem. 2 on p. 5 of [40, n. 2], that I is a tempered 
distribution, therefore a positive tempered measure. Now let C0 be a compact subset of 
G(A) with the property stated in Lemma 2.5 above. For Φ ∈ S(X(A)), there exists, 
according to Lem. 5 of [39, n. 41], a function Φ1 ∈ S(X(A)) such that

|Φ(ρ(c)x)| ≤ Φ1(x)

for all c ∈ C0 and x ∈ X(A). Applying Lemma 2.5 to (2.3) then shows that I(Φ) is 
absolutely convergent provided that this is so for the integral

I1 =
∫

Θ+

∑
ξ∈X(k)

Φ1(ρ(θ)ξ) · |ΔP0(θ)|−1
A dθ.

We write X(A) = Xv0 × X ′. By the definition of S(X(A)) (see [39, n. 29]), we can 
assume that Φ1 is of the form

Φ1(x) = Φv0(xv0)Φ′(x′),

where xv0 , x
′ are the projections of x ∈ X(A) on Xv0 and on X ′, with Φv0 ∈ S(Xv0), Φ′

being the characteristic function of a compact open subgroup of X ′. Let L be the set of 
ξ ∈ X(k) whose projection on X ′ belongs to the support of Φ′. Then I1 can be written 
as:

I1 =
∫

Θ+

∑
ξ∈L

Φv0(ρ(θ)ξ) · |ΔP0(θ)|−1
A dθ.

For every weight λ of ρ, let Xλ be the subspace of Xk, of dimension mλ over k, formed 
of eigenvectors of the weight λ, i.e. vectors a such that ρ(t)a = λ(t)a for t ∈ T . Then Xk

is the direct sum of Xλ.
Let

(aλi)1≤i≤mλ
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be a basis of Xλ over k; replacing aλi by N−1aλi if needed, where N is a suitable element 
in Ok, we may assume that L is contained in the Ok-submodule of Xk generated by all 
the aλi. The aλi also form a basis of Xv0 over kv0 ; for xv0 ∈ Xv0 , we can thus write

xv0 =
∑
λ,i

xλiaλi

with xλi ∈ kv0 ; then, if α > 1, there is a constant C such that

Φv0(xv0) ≤ C
∏
λ,i

(1 + |xλi|αv0
)−1.

On the other hand, under these conditions, we have

ρ(θ)xv0 =
∑
λ,i

λ(θ)xλiaλi,

where λ(θ) ∈ k×v0
; and, if xv0 is the projection on Xv0 of an element ξ of L, then all the 

xλi are elements in Ok by the choice of the basis (aλi). By the choice of v0, we have 
|xλi|v0 ≥ 1. Thus we have

∑
ξ∈L

Φv0(ρ(θ)ξ) ≤ C
∏
λ

⎛⎝∑
n≥0

1
1 + |λ(θ)|αv0

qnα

⎞⎠mλ

≤ C ′
∏
λ

sup(1, |λ(θ)|−1
v0

)mλ ,

where C ′ is a suitable constant. If we observe that |λ(θ)|A = |λ(θ)|v0 for any character 
λ of T and for any θ ∈ Θ+, we see that this gives the announced conclusion. �

Finally, we have the following analogue of Lem. 6 on p. 22 of [40, n. 13]. Recall that 
we have fixed a place v0 of k such that the residue field of kv0 is Fq, and we denote by aτ , 
for τ ∈ Z, the idele (av) given by av = �τ for v = v0, and av = 1 for any other place v, 
where � is a uniformizer at v0.

Lemma 2.7. Let (X(α))1≤α≤n and Y be vector spaces over k; let X =
∏

α X(α), and let 
p be a morphism of X into Y , rational over k and such that p(0, x(2), . . . , x(n)) = 0 for 
any x(2), . . . , x(n). Let C0 be a compact subset of S(X(A)), and let N ≥ 0. Then there 
exists a function Φ0 ∈ S(X(A)) such that

|aτ1 |NA |Φ(aτ1x(1), . . . , aτnx
(n))| = q−τ1N |Φ(aτ1x(1), . . . , aτnx

(n))| ≤ Φ0(x)

whenever Φ ∈ C0, τ1 ≤ 0, . . . , τn ≤ 0, x = (x(1), . . . , x(n)) ∈ X(A), p(x) ∈ Y (k) and 
p(x) �= 0.
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Proof. Note that a morphism of an affine space into another is just a polynomial map-
ping. Thus if we choose bases of X and of Y over k, then the coordinates of p(x) can 
be expressed as polynomials with coefficients in k by means of those of x. We denote by 
d the largest degree of these polynomials. On the other hand, write X(A) = Xv0 ×X ′, 
and likewise write X(A)(α) = X

(α)
v0 × X ′ (α) and Y (A) = Yv0 × Y ′; p determines in an 

obvious way mappings of Xv0 into Yv0 and of X ′ into Y ′. Choose bases of X(α)
v0 and of 

Yv0 over kv0 , and, for x(α)
v0 ∈ X

(α)
v0 (resp. yv0 ∈ Yv0), denote by rα(x(α)

v0 ) (resp. s(yv0)) the 
sum of the squares of the absolute value of the coordinates of x(α)

v0 (resp. of yv0) with 
respect to these bases. For xv0 = (x(1)

v0 , . . . , x
(n)
v0 ) ∈ Xv0 , put

r′(xv0) =
∑
α≥2

rα(x(α)
v0

), r(xv0) = r1(x(1)
v0

) + r′(xv0).

Since p(x) vanishes whenever x(1) = 0, there is a constant C > 0 such that for any 
xv0 ∈ Xv0 :

s(p(xv0)) ≤ C · r1(x(1)
v0

) · r(xv0)d−1,

and consequently, for t1 ≥ 1:

s(p(xv0)) ≤ Ct−2
1 (t21r1(x(1)

v0
) + r′(xv0))d.

For τ = (τ1, . . . , τn), τi ∈ Z, and xv0 ∈ Xv0 , let

�τxv0 = (�τ1x(1)
v0

, . . . , �τnx(n)
v0

);

the inequality which we have obtained shows that, whenever τ1 ≤ 0, . . ., τn ≤ 0:

s(p(xv0)) ≤ Cq−2τ1r(�τxv0)d.

Now, if we apply Lem. 5 on p. 194 of [39, n. 41], then this shows that we can choose 
Φ1 ∈ S(X(A)) such that |Φ(x)| ≤ Φ1(x) for all Φ ∈ C0 and all x = (xv0 , x

′) ∈ X(A), 
and likewise we can assume that Φ1 is of the form

Φ1(x) = Φv0(xv0)Φ′(x′),

where Φv0 ∈ S(Xv0) and Φ′ is the characteristic function of a compact open subgroup of 
X ′. Let E be the set of points x = (xv0 , x

′) of X(A) such that p(x) ∈ Y (k), p(x) �= 0 and 
Φ′(x′) �= 0; we will show that, on E , s(p(xv0)) has an infimum ε > 0. In fact, if it is not 
so, there will be a sequence of points xν = (xνv0 , x

′
ν) of E such that the sequence p(xνv0)

tends to 0 in Yv0 . As the support of Φ′ is compact, we can assume at the same time that 
the sequence x′

ν tends to a limit x̄′, therefore that p(x′
ν) tends to p(x̄′). But then the 

sequence of points yν = p(xν) tends to a limit ȳ in Y (A), for which we have ȳv0 = 0. As 
the points yν belong to Y (k) − {0}, which is discrete in Y (A), we have ȳ ∈ Y (k), ȳ �= 0, 
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therefore ȳv �= 0 for any v, whence the contradiction. Taking into account the inequality 
proved above, we thus have, for x ∈ E , τ1 ≤ 0, . . ., τn ≤ 0:

q−τ1 ≤ C ′r(�τxv0)d/2

with C ′ = (C/ε)1/2.
Now, for any i ≥ 0, put

ai = sup
xv0∈Xv0

(r(xv0)iΦv0(xv0)).

Let M ≥ Nd/2 be an integer. According to Lem. 4 on p. 193 of [39, n. 41], there exists 
ϕ ∈ S(R) such that we have, for any r ∈ R:

ϕ(x) ≥ inf
i≥0

(aM+i|r|−i).

For x and τ as above, we thus have, for any i ≥ 0:

q−2τ1M/dΦv0(�τxv0) ≤ C ′ 2M/dr(�τxv0)MΦv0(�τxv0)

≤ C ′ 2M/daM+i r(�τxv0)−i ≤ C ′ 2M/daM+i r(xv0)−i,

and therefore

q−τ1NΦv0(�τxv0) ≤ C ′ 2M/dϕ(r(xv0)).

Thus the conditions of the lemma will be satisfied by setting

Φ0(x) = C ′ 2M/dϕ(r(xv0))Φ′(x′). �
3. Siegel Eisenstein series

Recall G is the isometry group of a split space W and P is the Siegel parabolic 
subgroup of G. For Φ ∈ S(X(A)) and s ∈ C, define the Siegel Eisenstein series on ˜G(A)
by

E(g, s,Φ) =
∑

γ∈P (k)\G(k)

f
(s)
Φ (γg), ∀g ∈ ˜G(A),

where f (s)
Φ (g) = |a(g)|s−s0ω(g)Φ(0) and s0 = α(m − n + 1 − 2ε)/2. Here |a(g)| is defined 

in Section 1, and α2 is the dimension of the division algebra D over its center K.
Similar to the number field case, we are interested in the behavior of E(g, s, Φ) at s0.
Let P = NM be the Levi decomposition, where N is the unipotent radical and 

M ∼= ResD/kGLn is the Levi subgroup.
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Let Gm = GL1. Let T ∼= (Gm)n be the maximal split torus in G given by

T = {t = (t1, . . . , tn) : ti ∈ Gm},

where t = (t1, . . . , tn) means that t = diag(t1, . . . , tn) ∈ ResD/kGLn
∼= M .

Let ZM be the center of M . Then ZM
∼= ResD/kGm. We write an element z of ZM

as the form z = (z1, . . . , z1) with z1 ∈ ResD/kGm.
Let Δ be the set of simple roots of G relative to T . Then it is well-known that

Δ = {xi − xi+1 : 1 ≤ i ≤ n− 1} ∪ {2xn},

where xi(t) = ti, (xi − xi+1)(t) = tit
−1
i+1 and (2xn)(t) = t2n for t = (t1, . . . , tn) ∈ T . See 

for example [40, p. 76].
For a subset I of Δ, there is a parabolic subgroup PI defined by I as follows. Let Φ+

be the set of positive roots of G relative to T , let [I] be the set of roots which are linear 
combinations of elements in I and set Ψ(I) = Φ+− [I]. Let TI be the identity component 
of ∩α∈I ker(α), and let MI = ZG(TI) be the centralizer of TI in G. Then [I] = Φ(T, MI)
is the set of roots of MI relative to T . Let UΨ(I) be the unipotent subgroup defined by 
Prop. 21.9 on p. 232 of [1], whose Lie algebra is 

∑
α∈Ψ(I) gα. Then PI = UΨ(I)MI . See 

[27, p. 97] or [1, p. 234].
Note that P∅ ⊂ PI ⊂ PΔ = G, where P∅ = P0 is a minimal parabolic, and the proper 

maximal parabolic subgroups are defined by subsets of the form Δ − {α}.
For the Siegel parabolic subgroup P , it is easy to check the following.

Lemma 3.1. P is defined by Δ − {2xn}.

Let XM (R) be the group of quasi-characters of M(A) ∼= GLn(DA) into R+, where 
R+ is the set of positive real numbers. Then XM (R) ∼= R, where we identify α ∈ XM (R)
with r ∈ R if α(g) = |ν(g)|rA for g ∈ M(A) = GLn(DA).

Recall that for a character α of T and a cocharacter β∗ of T , there is a pairing 
(α, β∗) ∈ Z defined by

β∗(α(x)) = x(α,β∗), ∀x ∈ GL1.

See [1, p. 115]. This pairing can be extended to a pairing

( , ) : X(T )R ×X∗(T )R → R,

where X(T ) is the group of characters of T , X∗(T ) is the group of cocharacters of T , 
X(T )R := X(T ) ⊗Z R, etc.

In particular, for a root α, the corresponding coroot α∗ is defined to be the cocharacter 
of T such that (α, α∗) = 2.

Recall the (open) Weyl chamber CPI
associated to a parabolic subgroup PI defined 

by a subset I ⊂ Δ is given by
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CPI
= {β ∈ XM (R) : (β, α∗) > 0,∀α ∈ Δ − I},

where α∗ is the coroot corresponding to α, and we identify an element β = r of XM (R) =
R with an element of X(T )R which sends t = (t1, . . . , tn) ∈ T to (t1 · · · tn)r if r ∈ Z. See 
for example line 10 on p. 118 of [27].

Lemma 3.2. Identifying XM (R) with R. The Weyl chamber CP associated to the Siegel 
parabolic subgroup P is given by

CP = {r ∈ R : r > 0}.

Proof. Recall P is defined by Δ −{2xn}. For α = 2xn, α∗ is given by α∗(x) = (1, . . . , 1, x)
for x ∈ GL1, since α∗ satisfies (α, α∗) = 2, i.e. α(α∗(x)) = x2. For β = r ∈ XM (R) = R, 
(β, α∗) = r, since β(α∗(x)) = β(1, . . . , 1, x) = xr. �

Recall that the modular character δP (A) of P (A) can be expressed as

δP (A)(p) = |ΔP (p)|−1
A ,

where ΔP is the algebraic module of P (see the end of Section 1).

Lemma 3.3. The modular character δP (A) of P (A) is given by

δP (A)(p) = |a(p)|α(n+2ε−1),

where α2 is the dimension of D over its center. In particular,

δP (A)(z) = |ν(z)|α(n+2ε−1)
A

for z ∈ ZM (A) = GLn(DA).

Proof. For p = n(b)m(a) ∈ P , it follows from Lem. 12 on p. 43 of [40] that ΔP (p) =
Δ(a)−1. But Δ(a) = ν(a)α(n+2ε−1) by the formula on p. 48 of [40]. The desired result 
follows. �
Lemma 3.4. For z in the center of ˜M(A) and g ∈ ˜G(A), we have

f
(s)
Φ (zg) = λ(z)f (s)

Φ (g),

where

λ(z) = χ(z)|a(z)|s+
α(n+2ε−1)

2 .

In particular, the real part Re(λ) of λ is given by

Re(λ)(z) = |a(z)|Re(s)+α(n+2ε−1)
2 .
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Proof. This is just an application of the formulas for the Weil representation in Section 1. 
Note that f (s)

Φ (pg) = χ(p)|a(p)|s+α(n+2ε−1)
2 f

(s)
Φ (g) for p ∈ ˜P (A) and g ∈ ˜G(A), i.e. 

f
(s)
Φ ∈ Ind

˜G(A)
˜P (A)

(χ| · |s) (normalized induction). �
Now we can prove the following analogue of Thm. 1 on p. 57 of [40, n. 40].

Theorem 3.5. If Re(s) > α(n + 2ε − 1)/2, then for any g ∈ ˜G(A), the series E(g, s, Φ)
is absolutely convergent for all Φ ∈ S(X(A)), and uniformly in Φ on every compact 
subset of S(X(A)). In particular, if m > 2n + 4ε − 2, then E(g, s, Φ) is holomorphic at 
s0 = α(m − n + 1 − 2ε)/2.

Proof. This follows from Godement’s convergence criterion (when ˜G(A) = G(A), see 
Lem. 2.2 on p. 118 of [27]), which asserts that the series 

∑
γ∈P (F )\G(F ) f

(s)
Φ (γg) converges 

uniformly for g in a compact set provided Re(λ) − δP (A) ∈ CP . See Thm. 3 on p. 125 
of [7] for the number field case, and see [28, p. 980] or Prop II.1.5 on pp. 85–86 of [26]
when ˜G(A) is a double cover of G(A).

Note that Re(λ) −δP (A) ∈ CP if and only if Re(s) +α(n +2ε −1)/2 −α(n +2ε −1) > 0, 
i.e. Re(s) > α(n + 2ε − 1)/2. �

From now on, we write

E(Φ) = E(1, s0,Φ)

for Φ ∈ S(X(A)). Then

E(Φ) =
∑

γ∈P (F )\G(F )

ω(γ)Φ(0),

the series on the right side being absolutely convergent whenever m > 2n + 4ε − 2.
By the Bruhat decomposition G(k) = ∪n

r=0P (k)wrP (k) = ∪n
r=0P (k)wrN(k), we have

E(Φ) = Φ(0) +
n∑

r=1

∑
b∈Hern(k)

ω(wrn(b))Φ(0).

The term ω(wrn(b))Φ(0) is given by

ω(wrn(b))Φ(0) =
∫

Xr(A)

ω(n(b))Φ(x) dx =
∫

Xr(A)

Φ(x)ψ(qb(x)) dx,

where Xr = {(x1, . . . , xr, 0, . . . , 0)} ⊂ X.
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In particular, the term ω(wnn(b))Φ(0) is given by

ω(wnn(b))Φ(0) =
∫

X(A)

ω(n(b))Φ(x) dx =
∫

X(A)

Φ(x)ψ(qb(x)) dx.

For 1 ≤ r ≤ n, let

EXr
(Φ) =

∑
b∈Hern(k)

∫
Xr(A)

Φ(x)ψ(qb(x)) dx. (3.1)

Also let EX0(Φ) = Φ(0).

Note that for any 0 ≤ r ≤ n, if we embed Herr into Hern via b1 �→
(
b1 0
0 0

)
, then

EXr
(Φ) =

∑
b∈Herr(k)

∫
Xr(A)

Φ(x)ψ(qb(x)) dx.

Then

E(Φ) = Φ(0) +
∑

1≤r≤n

EXn
(Φ) = EX(Φ) +

∑
0≤r≤n−1

EXr
(Φ). (3.2)

We assume m > 2n +4ε − 2 in the rest of this section. Note that this is just condition 
(B) on p. 55 of [40]. Then by Theorem 3.5 the above series (3.1) and (3.2) are absolutely 
convergent, uniformly in Φ on every compact subset of S(X(A)).

For b ∈ Hern(k), let

F ∗
Φ(b) =

∫
X(A)

Φ(x)ψ(qb(x)) dx.

Then

EX(Φ) =
∑

b∈Hern(k)

F ∗
Φ(b),

and it follows that this series is absolutely convergent, uniformly in Φ on every compact 
subset of S(X(A)). It follows from the Poisson summation formula that

EX(Φ) =
∑

b∈Hern(k)

FΦ(b), (3.3)

where FΦ is the Fourier transform of F ∗
Φ. Moreover, by Prop. 2 on p. 7 of [40, n. 2], the 

Fourier transform is given, for each b ∈ Hern(A), by
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FΦ(b) =
∫

Φ(x) dμb(x),

where μb is a positive tempered measure on X(A), of support contained in i−1
X ({b}); and 

FΦ and F ∗
Φ are continuous and integrable functions on Hern(A). Finally, Prop. 2 of [40, 

n. 2] shows that the second member of (3.3) is absolutely convergent; as μb are positive 
measures, we conclude, by Lem. 5 on p. 194 of [39, n. 41], that the second member 
converges uniformly on every compact subset of S(X(A)). According to Lem. 2 on p. 5 
of [40, n. 2], this shows that EX is a positive tempered measure, given by

EX =
∑

b∈Hern(k)

μb,

where μb(Φ) =
∫

Φ dμb = FΦ(b). Similarly, for r < n, EXr
is a positive tempered measure 

given by

EXr
(Φ) =

∑
b∈Herr(k)

μb(Φr),

where Φr = Φ|Xr(A) and Herr is embedded into Hern via b1 �→
(
b1 0
0 0

)
.

Finally, we conclude similarly from formula (3.2) that E is a positive tempered mea-
sure, given by the sum of the measures EXr

.
It is easy to see that if det(b) �= 0, then the b-th Fourier coefficient of E(Φ) can be 

expressed as

Eb(Φ) =
n∑

r=1
FΦr

(b).

Taking for Φ a function of the form

Φ(x) =
∏
v

Φv(xv) (x = (xv) ∈ X(A)),

where the product is over all the places v of k, Φv belongs to S(Xv) for any v, and Φv is 
the characteristic function of Xo

v := X(Ov) for almost all v. And we denote by Fv and 
F ∗
v , for each v, the functions defined on Hern(kv) by the formulas

Fv(b) =
∫

Uv(b)

Φv(x) |θb(x)|v, F ∗
v (b) =

∫
Xv

Φv(x)ψv(qb(x)) dx;

here we write Uv(b) for the variety formed by points of i−1
X ({b}) of maximal rank in Xv, 

and θb for the gauge form defined on this variety by the formula (29) on p. 54 of [40, n. 37]. 
According to Prop. 6 on p. 54 of [40, n. 37], Fv and F ∗

v are continuous and integrable, and 
are Fourier transforms of each other. By the hypotheses made on Φ, we see immediately 
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that F ∗
v takes constant value 1 on Hern(kv)o for almost all v, here Hern(kv)o denotes the 

lattice in Hern(kv) generated by an arbitrarily chosen basis Hern(k)o of Hern(k) over k.
It is then immediate that, for any b = (bv) ∈ Hern(A), we have

F ∗
Φ(b) =

∏
v

F ∗
v (bv),

where almost all the factors of the second member are of value 1. We deduce that∫
|F ∗

Φ(b)| db =
∏
v

∫
|F ∗

v (bv)| dbv.

In the above equality, the first member is < +∞; it is �= 0 unless F ∗
Φ = 0; besides, we 

can always modify a finite number of the functions Φv so as to have F ∗
Φ �= 0, for example 

by taking Φv ≥ 0 and Φv �= 0 for any v, which implies that FΦ �= 0 and consequently 
F ∗

Φ �= 0. As almost all the factors of the second member of the above equality are ≥ 1, it 
follows that the second member is absolutely convergent (in the sense defined in note (1)
on p. 11 of [40], which means that there exists a finite set S of places of k such that all the 
factors outside of S are defined and nonzero, and the product of all the factors outside 
of S is absolutely convergent). We conclude easily that the Fourier transform FΦ of F ∗

Φ
is the product of the Fourier transforms Fv of F ∗

v , that is, for any b = (bv) ∈ Hern(A), 
we have

FΦ(b) =
∏

Fv(bv),

where the product of the second member is absolutely convergent.
If we denote by μv the tempered measure on Hern(kv) determined by the measure 

|θbv |v on Uv(bv), then Fv(bv) is just μv(Xo
v ) whenever Φv is the characteristic function of 

Xo
v . The above formula thus shows that the product of μv(Xo

v ) is absolutely convergent, 
and that the measure μb which appears in the above expression of FΦ is just 

∏
μv.

When b belongs to Hern(k), the set i−1
X ({b}), on the universal domain Ω, is a k-closed 

subset of X(Ω). We denote by U(b) the set of points of maximal rank of this set; it is 
a k-open subset of i−1

X ({b}); according to Prop. 3 on p. 34 of [40, n. 22], when U(b) is 
not empty, it is an orbit of the group U(V ), taking also on the universal domain. We 
conclude easily from Lem. 8 on p. 28 of [40, n. 17] that, if L ⊃ k is a field containing k, 
then the set U(b)L of points of U(b) which are rational over L is just the set of points of 
i−1
X ({b}) in X(L) which are of maximal rank in X(L). In particular, for L = kv, we see 

that U(b)v is just the set Uv(b).
For b ∈ Hern(k), let θb denote the gauge form on the variety U(b) defined by the 

formula

θb(x) =
(

dx
diX(x)

)
b

,

in the sense on p. 14 of [40, n. 6].
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Recall that a system of convergence factors for an algebraic group G over k is a 
sequence of positive real numbers λ = (λv) indexed by the places of k such that the 
product 

∏
λv

∫
G(Ov) |ω|v is absolutely convergent in the sense that there exists a finite 

set S of places of k such that 
∫
G(Ov) |ω|v is defined and nonzero for v /∈ S and the product ∏

v/∈S λv

∫
G(Ov) |ω|v is absolutely convergent in the usual sense, where ω is a gauge form 

on G and |ω|v is the corresponding positive measure on G(kv) for every place v of k. See 
[40, p. 11].

We have the following analogue of Lem. 19 on p. 61 of [40, n. 43]. The proof is similar 
and we omit it.

Lemma 3.6. For every b ∈ Hern(k), 1 is a system of convergence factors for U(b), and 
we have μb = |θb|A.

In summary, we have shown the following results, which are analogues of Thm. 2 and 
Thm. 3 on pp. 62–63 of [40, n. 44].

Theorem 3.7. Assume that m > 2n + 4ε − 2. For Φ ∈ S(X(A)), put

EX(Φ) =
∑

b∈Hern(k)

∫
X(A)

Φ(x)ψ(qb(x)) dx.

Then the series of the second member is absolutely convergent, and EX is a positive 
tempered measure. Moreover, for each b ∈ Hern(k), 1 is a system of convergence factors 
for the variety U(b) of points in i−1

X ({b}) with maximal rank; and, if θb denotes the gauge 
form on this variety defined by the formula

θb(x) =
(

dx
diX(x)

)
b

,

then the measure |θb|A on U(b)A is equal to the positive tempered measure μb on X(A)
given by μb(Φ) = FΦ(b), and we have

EX =
∑

b∈Hern(k)

μb.

In particular, if n = 0, then EX(Φ) = Φ(0).

Theorem 3.8. Assume that m > 2n + 4ε − 2. For Φ ∈ S(X(A)), put

E(Φ) =
∑

γ∈P (F )\G(F )

ω(γ)Φ(0).

Then the series of the second member is absolutely convergent; E is a positive tempered 
measure; and we have
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E =
n∑

r=0
EXr

,

where Xr = {(x1, . . . , xr, 0, . . . , 0)} ⊂ X, EX0(Φ) = Φ(0), and for 1 ≤ r ≤ n,

EXr
(Φ) =

∑
b∈Hern(k)

∫
Xr(A)

Φ(x)ψ(qb(x)) dx.

Note that if we embed Herr into Hern via b1 �→
(
b1 0
0 0

)
and let Φr = Φ|Xr(A), then

EXr
(Φ) =

∑
b∈Herr(k)

∫
Xr(A)

Φ(x)ψ(qb(x)) dx =
∑

b∈Herr(k)

μb(Φr).

4. Uniqueness theorems

In this section, we will prove some results analogous to those in [40, Chap. V], which 
will be used in the proof of the Siegel-Weil formula. Recall X = Mm×n(D) = V n. We 
assume that m > 2n + 4ε − 2 in this section. We say a tempered measure on X(A) is 
invariant under G(k) when it is invariant under ω(g) for any g ∈ G(k); we also say that 
a measure (tempered or not) on X(A) is invariant under an element h of H(A) if it 
is so under the mapping x �→ hx of X(A) onto itself. Recall that, by the corollary to 
Prop. 9 of [39, n. 51], the automorphisms Φ �→ ω(g)Φ and Φ(x) �→ Φ(hx) of S(X(A)), 
for g ∈ ˜G(A) and h ∈ H(A), are permutable; it is also the same for the corresponding 
automorphisms of the space of tempered distributions on X(A).

Let Ê be a tempered measure on X(A), invariant under G(k), and let Φ ∈ S(X(A)); 
then g �→ Ê(ω(g)Φ) is a continuous function on ˜G(A), left invariant under G(k). We 

will give conditions for this function to be bounded on ˜G(A), uniformly in Φ on every 
compact subset of S(X(A)); for this, we will apply the results of the reduction theory 
in Section 2 to the group G.

We write x ∈ X(k) in the form x = (x1, . . . , xn), where each xi ∈ V (k) = Mm×1(D). 
Let t = (t1, . . . , tn) be an element of (Gm)n, with each ti ∈ Gm; we denote by λt

the automorphism of X defined by the diagonal matrix whose diagonal elements are 
t1, . . . , tn; it can also be written as

x = (x1, . . . , xn) �→ xλt = (x1t1, . . . , xntn).

For t ∈ (Gm)n, denote by λ̄t the automorphism of Hern determined by the automor-
phism λt of X, which is given by

b = (bαβ) �→ bλ̄t = (bαβtαtβ).
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Then the determinants of λt and of λ̄t, with respect to the bases of X(k) and of Hern(k)
over k, are respectively

D(λt) = (t1 . . . tn)mδ, D(λ̄t) = (t1 . . . tn)(n+2ε−1)δ,

where we recall that δ is the dimension of D over k. We conclude that the gauge form 
θb(x) on U(b), defined as in Theorem 3.7, is transformed by λt to the gauge form

θb(xλ−1
t ) = (t1 . . . tn)(−m+n+2ε−1)δθb′(x) (4.1)

on U(b′), with b′ = bλ̄t. See [40, p. 66].
In particular, for t ∈ (A×)n, λt and λ̄t are automorphisms of X(A) and of Hern(A), 

respectively. For t = (t1, . . . , tn) ∈ (Gm)n, if we put |t|A = |t1 · · · tn|A, and regard λt

as the element diag(t1, . . . , tn) in GLn(A), then we have, whenever ˜G(A) = G(A), for 
Φ ∈ S(X(A)), x = (x1, . . . , xn):

ω(m(λt))Φ(x) = χ(m(λt))|t|mδ/2
A Φ(x1t1, . . . , xntn). (4.2)

When ˜G(A) is a double cover of G(A), we have a similar formula for the action of 
ω((m(λt), 1)), which we also write simply as ω(m(λt)).

We denote by T the image of (Gm)n in G under t �→ m(λt) =
(
λt 0
0 λ−1

t

)
, where we 

regard λt = diag(t1, . . . , tn) ∈ GLn; then T is a maximal split torus of G. The strictly 
positive roots of G relative to T are xα − xβ and xα + xβ for 1 ≤ α < β ≤ n, together 
with 2xα for 1 ≤ α ≤ n in the case where ε > 0 (see p. 66 of [40, n. 47]). Recall we have 
defined Θ(T ) and Θ+ = Θ(0) in Section 2. Let T (A)+ = Θ+ · T (A)1. By Lemma 2.3
there is a compact subset C1 of G(A) such that G(A) = C1 ·T (A)+ ·G(k). Let T (A)′ be 
the subset of T (A) formed of elements m(λt) of T (A) for which

|t1|A ≥ . . . ≥ |tn|A ≥ 1.

For ε > 0, we verify easily that T (A)+ = T (A)′ −1, so that by putting C = C−1
1 we have 

G(A) = G(k) · T (A)′ · C. If ε = 0, we verify easily that T (A)+ is the union of T (A)′ −1

and s−1
1 T (A)′ −1s1, where

s1 =

⎛⎜⎝1n−1 0 0 0
0 0 0 1
0 0 1n−1 0
0 1 0 0

⎞⎟⎠ ;

so that by putting C = C−1
1 ∪ s1C

−1
1 we have G(A) = G(k) · T (A)′ · C.

In what follows we will identify (A×)n with T (A) by means of the isomorphism t �→
m(λt), and also with its image in ˜G(A) by means of the isomorphism t �→ (m(λt), 1). We 

can then write ˜G(A) = G(k) · T (A)′ · π−1(C), where π : ˜G(A) → G(A) is the canonical 
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projection. This shows the following result, which is an analogue of Lem. 20 on p. 67 of 
[40, n. 47].

Lemma 4.1. Let Ê be a tempered measure on X(A), invariant under G(k); let T (A)′′ be 
a subset of T (A)′ such that T (A)′ ⊂ T (k) · T (A)′′ · C ′, where C ′ is a compact subset of 
T (A). Then, for the function g �→ Ê(ω(g)Φ) to be bounded on ˜G(A), uniformly in Φ on 
every compact subset of S(X(A)), it is necessary and sufficient that it be so on T (A)′′.

For each b ∈ Hern(k), denote by b1, . . . , bn the columns of the matrix b, and write 
b = (b1, . . . , bn). We thus have bα ∈ Mn×1(D) for 1 ≤ α ≤ n. If b = iX(x) for some 
x ∈ X, then bα = x∗ ·Q · xα. For 0 ≤ α ≤ n, we denote by Her(α)

n (k) the set of elements 
b = (b1, . . . , bn) of Hern(k) such that b1 = . . . = bα = 0 and bα+1 �= 0; Hern(k) is thus 
the disjoint union of Her(α)

n (k) for 0 ≤ α ≤ n.
We have the following analogue of Lem. 21 on p. 68 of [40, n. 48].

Lemma 4.2. Let Ê be a positive tempered measure on X(A), invariant under T (k), whose 
support is contained in the union of i−1

X ({b}) for b ∈ Her(0)n (k). Then the function g �→
Ê(ω(g)Φ) is bounded on T (A)′, uniformly in Φ on every compact subset of S(X(A)).

Proof. As before, we denote by Θ(T ) the set of elements of T (A) of the form 
(aτ1 , . . . , aτn), with τα ∈ Z for 1 ≤ α ≤ n; put Θ′ = Θ(T ) ∩ T (A)′; Θ′ is the set of 
elements of the above form for which τ1 ≤ . . . ≤ τn ≤ 0. There is a compact subset 
C ′ of T (A)′ such that T (A)′ = T (k) · Θ′ · C ′. Let C0 be a compact subset of S(X(A)); 
let C ′

0 be the set of ω(θ)Φ for θ ∈ C ′, Φ ∈ C0. Applying Lemma 2.7 to the spaces 
X = Mm×n(D), X(α) = Mm×1(D) for 1 ≤ α ≤ n, Y = Mn×1(D), and to the morphism 
x �→ p(x) = x∗ · Q · x1 of X into Y , we conclude that there exists Φ0 ∈ S(X(A)) such 
that |ω(θ)Φ| ≤ Φ0 on the support of Ê for all θ ∈ Θ′, Φ ∈ C ′

0. The conclusion of the 
lemma follows. �

Let b ∈ Hern(k); let j be the canonical injection of U(b) into X; j then determines an 
injective mapping jA of U(b)A into X(A), and more precisely into i−1

X ({b}). Following 
the definition on p. 69 of [40, n. 49], we say a measure on X(A) is supported by (portée 
par) U(b)A if it is the image under jA of a measure on U(b)A. For example, this is so for 
the measure μb, which by definition is the image of |θb|A under jA, and which appears in 
Theorem 3.7. When b is a non-degenerate element of Hern(k), it results from the remarks 
on p. 38 of [40, n. 25] that jA is an isomorphism of U(b)A onto i−1

X ({b}); in this case, 
every measure of support contained in i−1

X ({b}) is supported by U(b)A.
On the other hand, in the following, a place v of k will be given once and for all, 

and we write X(A) = Xv ×X ′. For x ∈ X(A), we write x = (xv, x′), where xv and x′

are the projections of x onto Xv and onto X ′ respectively. We write similarly U(b)A =
U(b)v × U(b)′.

We have the following analogue of Lem. 22 on p. 70 of [40, n. 49].
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Lemma 4.3. Let b ∈ Hern(k), and let H ′
v be a subgroup of Hv which acts transitively on 

U(b)v. Let μ be a positive tempered measure supported by U(b)A and invariant under 
H ′

v. Then, to every function Φ′ ∈ S(X ′), there corresponds a constant c(Φ′) such that 
for any Φv ∈ S(Xv) we have:∫

Φv(xv)Φ′(x′) dμ((xv, x
′)) = c(Φ′)

∫
U(b)v

Φv · |θb|v. (4.3)

Proof. By hypothesis, μ is the image of a measure ν on U(b)A, i.e. the first member of 
(4.3) is the integral of Φv(xv)Φ′(x′) on U(b)v × U(b)′ with respect to ν. Assume first 
Φ′ ≥ 0. By hypothesis, the integral in question is finite whenever Φv is ≥ 0 and belongs 
to S(Xv), thus also whenever Φv is continuous and of compact support on Xv, and 
especially whenever Φv is continuous and of compact support on U(b)v. It can thus be 
written as 

∫
Φv dνv, where νv is a positive measure on U(b)v. By the hypothesis made 

on μ, νv is invariant under H ′
v. We can then assume that H ′

v is closed in Hv (if not, 
we replace it with its closure), and thus identify U(b)v with the homogeneous space 
determined by H ′

v and the stabilizer of one of its points in H ′
v. But the definition of 

the gauge form θb in Theorem 3.7 shows that it is invariant under H, up to a factor 
±1; consequently, the measure |θb|v is invariant under Hv, and especially under H ′

v. The 
theorems on the uniqueness of the invariant measure on homogeneous spaces (see [2], 
Chap. VII, §2, n. 6) then show that νv only differs from |θb|v by a scalar factor c(Φ′). The 
general case can be reduced to the special case Φ′ ≥ 0 and thus follows immediately. �

Now we can prove the following analogue of Lem. 23 on p. 70 of [40, n. 49].

Lemma 4.4. Let Ê be a positive tempered measure, invariant under T (k), which is the 
sum of measures μ̂b respectively supported by U(b)A for b ∈ Hern(k). Assume that there 
exists a place v of k and a subgroup H ′

v of Hv acting transitively on U(b)v for any 
b ∈ Hern(k), such that Ê is invariant under H ′

v. Then the function g �→ Ê(ω(g)Φ) is 
bounded on T (A)′, uniformly in Φ on every compact subset of S(X(A)).

Proof. Let Êα, for 0 ≤ α ≤ n, be the sum of μ̂b for b ∈ Her(α)
n (k); we will have Ê =

Ê0+. . .+Ên. If t ∈ T (k), then λ̄t determines a permutation on each of the sets Her(α)
n (k), 

so that each of the measures Êα is invariant under T (k). On the other hand, H(A) leaves 
invariant each of the sets i−1

X ({b}); with the hypotheses of the statement, it follows that 
H ′

v leaves invariant each of the measures μ̂b, thus also each of the Êα; this satisfies thus 
the same hypotheses as Ê, and we are reduced to dealing with Êα.

Thus let α be such that 0 ≤ α ≤ n. There is a constant q1, equal to 1 if v = v0 and 
to qv if v �= v0, such that there exists, for every τ ∈ Z, an element y of kv satisfying 
q−τ ≤ |y|v ≤ q1q

−τ ; and there exists a compact subset C of A× such that every element 
t of A× satisfying 1 ≥ |t|A ≥ q−1

1 can be written as the form ρc with ρ ∈ k, c ∈ C; 
we denote by Cn the compact subset of T (A) formed of the elements (c1, . . . , cn) with 
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cβ ∈ C for 1 ≤ β ≤ n. Let C0 be a compact subset of S(X(A)), and we apply Lemma 2.7
to the space X = Mm×n(D) considered as a product of the spaces

X(1) = Mm×(α+1)(D), X(2) = . . . = X(n−α) = Mm×1(D)

in such a way that the projections of x = (x1, . . . , xn) on these spaces are respectively 
(x1, . . . , xα+1), xα+2, . . ., xn; we take Y = Mn×(α+1)(D), and p the morphism of X into 
Y given by

p(x) = x∗ ·Q · (x1, . . . , xα+1).

It is concluded that there exists Φ0 ∈ S(X(A)), Φ0 ≥ 0, such that

|ω(m(λθ))ω(m(λc))Φ(x)| ≤ Φ0(x)

for all x ∈ X(A), iX(x) ∈ Her(α)
n (k), c ∈ Cn, Φ ∈ C0, and θ belonging to the set Θ′

α of 
elements (aτ1 , . . . , aτn) of Θ(T ) which satisfy the condition

τ1 = . . . = τα+1 ≤ . . . ≤ τn ≤ 0.

Furthermore, we can assume that Φ0 is of the form Φv(xv)Φ′(x′), with

Φv ∈ S(Xv), Φ′ ∈ S(X ′).

Now let t = (t1, . . . , tn) be an element of T (A)′. For 1 ≤ β ≤ α, let yβ ∈ kv be such 
that |yβ |v is between |tβt−1

α+1|A and q1|tβtα+1|A; let yβ = 1 for β ≥ α + 1; we will have 
|yβ |v ≥ 1 for 1 ≤ β ≤ n. On the other hand, for β ≥ α + 1, let τβ ∈ Z be such that 
|aτβ |A = |tβ |A, and let τβ = τα+1 for 1 ≤ β ≤ α. For every β, we will have

1 ≥ |tβy−1
β a−1

τβ
|A ≥ q−1

1 ,

so that we can write tβ = ρβyβaτβcβ , with ρβ ∈ k, cβ ∈ C, for 1 ≤ β ≤ n. By putting

y = (y1, . . . , yn), θ = (aτ1 , . . . , aτn),

we will thus have t = ρyθc with ρ ∈ T (k), y ∈ Tv, θ ∈ Θ′
α and c ∈ Cn. As Êα is invariant 

under T (k), it follows that we have

|Êα(ω(m(λt))Φ)| ≤ Êα(ω(m(λy))Φ0)

for all Φ ∈ C0, Φ0 being chosen as above.
To evaluate the second member of this integral, we apply Lemma 4.3 to each of the 

measures μ̂b for b ∈ Her(α)
n (k); denoting by cb(Φ′) the constant which appears in that 

lemma when we substitute μ̂b with μ, we obtain
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Êα(ω(m(λy))Φ0) =
∑

b∈Her(α)
n (k)

cb(Φ′)
∫

U(b)v

ω(m(λy))Φv · |θb|v.

As we have yβ = 1 for β ≥ α + 1, it results from the definition of Her(α)
n (k) that the 

automorphism λ̄y of Hern(kv) determined by λy leaves invariant all the elements of 
Her(α)

n (k). Note that we have

|Êα(ω(m(λy))Φ0)| = |y1 . . . yα|(−m+2n+4ε−2)δ/2
v Êα(Φ0).

As we have assumed that m > 2n + 4ε − 2, the exponent of the second member is < 0. 
As we have |yβ |v ≥ 1 for all β, we obtain

|Êα(ω(m(λt))Φ0)| ≤ Êα(Φ0),

this inequality being valid for all t ∈ T (A)′ and Φ ∈ C0. This completes the proof. �
Now we can prove the main result of this section, which is an analogue of Thm. 4 

on p. 72 of [40, n. 50]. Note that by Theorem 3.8, if m > 2n + 4ε − 2, then the Siegel 
Eisenstein series E(Φ) is absolutely convergent for any Φ ∈ S(X(A)) and this gives a 
positive tempered measure E on X(A).

Theorem 4.5. Assume that m > 2n + 4ε − 2. Let v be a place of k such that U(0)v is not 
empty, and H ′

v a subgroup of Hv acting transitively on U(b)v for any b ∈ Hern(k). Let 
E′ be a positive tempered measure on X(A), invariant under G(k) and under H ′

v, and 
such that E′ − E is a sum of measures supported by U(b)A for b ∈ Hern(k). Then we 
have E′ = E.

Proof. With the notations of Theorems 3.7 and 3.8, we have E =
∑

0≤r≤n EXr
; EX

is the sum of the measures |θb|A respectively supported by U(b)A, while EXr
has its 

support contained in Xr(A) for any r < n. On the universal domain, let U be the set 
of points of X of maximal rank; it is k-open; it is an orbit for the group Aut(V ); for 
any b ∈ Hern(k), U(b) is a subvariety of U and is thus k-closed in U . Let F = X − U ; 
it is a k-closed subset of X, invariant under the group Aut(V ) and especially under 
H ⊂ U(V ), which contains Xr whenever r < n. Consequently, F (A) is a closed subset of 
X(A), invariant under H(A) and obviously also under Aut(Xk), which contains Xr(A)
for r < n and has no common point with U(b)A for any b ∈ Hern(k). It follows that 
EX is the restriction of E to the open set X(A) − F (A), and that the sum 

∑
EXr

over 
0 ≤ r < n is the restriction of E to F (A). The hypothesis made on E′ then implies 
that the restriction Ê of E′ to X(A) − F (A) is the sum of the measures μ̂b respectively 
supported by the U(b)A for b ∈ Hern(k), and that the restriction of E′ to F (A) is the 
same as that of E, so that we have E′ − Ê = E − EX ; furthermore, as E′ and F (A)
are invariant under H ′

v and under Aut(Xk), it is the same for Ê, which thus satisfies the 
hypotheses of Lemma 4.4.
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According to that lemma, the function g �→ Ê(ω(g)Φ) is bounded on T (A)′, uniformly 
in Φ on every compact subset of S(X(A)). This conclusion can be applied in particular 
to EX , which is deduced from E as Ê is from E′; it can be applied also to the tempered 
measure E′′ given by

E′′ = E′ −E = Ê −EX .

But this measure is invariant under G(k), since E and E′ are so; we can thus apply 

Lemma 4.1, which shows that the function g �→ E′′(ω(g)Φ) is bounded on ˜G(A), for 
any Φ ∈ S(X(A)). For every Φ ∈ S(X(A)), we denote by M(Φ) the supremum of 
|E′′(ω(g)Φ)| for g ∈ ˜G(A); we have M(ω(g)Φ) = M(Φ) for all g ∈ ˜G(A).

The measure E′′ is the sum of the measures μ′′
b = μ̂b − μb, where μb denotes once 

again the measure |θb|A supported by U(b)A. We thus have, for Φ ∈ S(X(A)):

E′′(Φ) =
∑

b∈Hern(k)

∫
Φ dμ′′

b ;

in this formula, the series of the second member is absolutely convergent, uniformly in 
Φ on every compact subset of S(X(A)), since it is obviously also the series similarly 
formed by means of the positive measures μ̂b and μb. Let b∗ ∈ Hern(A), we then have, 
for Φ ∈ S(X(A)):

ω(n(b∗))Φ(x) = Φ(x)ψ(qb∗(x))),

and consequently

E′′(ω(n(b∗))Φ) =
∑

b∈Hern(k)

ψ(κ2 τ(bb∗))
∫

Φ dμ′′
b .

We can consider this formula as giving the expansion of the first member into Fourier 
series on the compact group Hern(A)/Hern(k). As the first member, in absolute value, 
is ≤ M(Φ), we have, by the Fourier formulas, that

|
∫

Φ dμ′′
b | ≤ M(Φ),

and consequently, replacing Φ by ω(g)Φ,

|
∫

ω(g)Φ · dμ′′
b | ≤ M(Φ), (4.4)

this integral being valid for all g ∈ ˜G(A), b ∈ Hern(k) and Φ ∈ S(X(A)).
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Taking for Φ the form Φv(xv)Φ′(x′), with Φv ∈ S(Xv), Φ′ ∈ S(X ′). By the hypotheses 
made on E′, the measures μ̂b are invariant under H ′

v, and the same is true for μb; we 
can thus apply Lemma 4.3 to them. Consequently, we can write

∫
Φ dμ′′

b = cb(Φ′)
∫

U(b)v

Φv · |θb|v.

We now replace Φ by ω(m(λt))Φ with t ∈ Tv in this formula; this is equivalent to not 
changing Φ′ but replacing Φv by ω(m(λt))Φv, the later function being given by the 
formula analogous to (4.2). If we put b′ = bλ̄t, then this gives, by (4.1):

∫
ω(m(λt))Φ · dμ′′

b = χ(m(λt))cb(Φ′)|t1 . . . tn|(−m+2n+4ε−2)δ/2
v

∫
U(b′)v

Φv · |θb′ |v. (4.5)

Denote by F (b′) the integral which appears in the second member; then Prop. 6 on p. 
54 of [40, n. 37] shows that it is a continuous function of b′ ∈ Hern(kv), so that F (b′)
tends to F (0) when all the |tα|v tend to 0. As the exponent of |t1 . . . tn|v in the second 
member of (4.5) is < 0 by the assumption m > 2n +4ε −2, and the second member must 
remain bounded for all t ∈ Tv, we conclude that cb(Φ′)F (0) = 0. But F (0) is given by

F (0) =
∫

U(0)v

Φv · |θ0|v,

and, by hypothesis, U(0)v is not empty; we can thus choose Φv in such a way that F (0)
is not zero. We thus have cb(Φ′) = 0, and consequently 

∫
Φ dμ′′ = 0 whenever Φ is of the 

form Φv(xv)Φ′(x′). This implies obviously μ′′
b = 0. As this is so for any b ∈ Hern(kv), we 

thus have E′′ = 0, i.e. E′ = E. �
Observe that Theorem 4.5 provides a characterization of the measure EX , by induction 

on the rank n of X over Mm(D), from E0 = δ0.

5. The theta integral and the Siegel-Weil formula

In this section, we will first study the theta integrals and give a convergence criterion, 
and then prove the Siegel-Weil formula, which is an equality relating the Siegel Eisenstein 
series with the theta integral.

For Φ ∈ S(X(A)), define the associated theta integral by

I(Φ) =
∫ ∑

ξ∈X(k)

Φ(hξ) · dh,

H(A)/H(k)
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where dh is the Haar measure on H(A) such that vol(H(A)/H(k)) = 1. Note that since 
we are integrating on the quotient group H(A)/H(k) of left cosets, we take the action 
Φ(hξ) = ω(h−1)Φ(ξ) here.

We have the following convergence criterion for the theta integral I(Φ), which is an 
analogue of Prop. 8 on p. 75 of [40, n. 51]. Recall r is the Witt index of the η-hermitian 
space V .

Proposition 5.1. The theta integral I(Φ) is absolutely convergent for any Φ ∈ S(X(A))
whenever r = 0 or m − r > n + 2ε − 1.

Proof. If r = 0, then H is k-anisotropic and thus H(A)/H(k) is compact (see for example 
Thm. 5.1.1 on pp. 582–583 of [3]), whence the theta integral is absolutely convergent.

Now assume r > 0. Then we can choose a basis of V for which the η-hermitian form 
on V is given by a matrix of the form

Q =

⎛⎝ 0 0 1r
0 Q0 0

η · 1r 0 0

⎞⎠ ,

where Q0 is the matrix (of order m − 2r) of an anisotropic η-hermitian form. Let T ∼=
(Gm)r be the maximal split torus in H consisting of diagonal matrices of order m whose 
diagonal elements are

(t1, . . . , tr, 1, . . . , 1, t−1
1 , . . . , t−1

r )

with each ti ∈ Gm. Let P0 be a minimal parabolic subgroup of H0 which contains T .
Let ρ : H → Aut(X) be the representation given by ρ(h)x = hx. For each character 

λ of T , let mλ be the multiplicity of λ. The weights of ρ are xi and −xi for 1 ≤ i ≤ r, 
each with multiplicity δn.

By Lemma 2.6, it suffices to show that∫
Θ+

∏
λ

sup(1, |λ(θ)|−1
A )mλ · |ΔP0(θ)|−1

A dθ

is convergent whenever m − r > n + 2ε − 1.
Note that

Θ+ := Θ(0) = {(aτ1 , . . . , aτr) : 0 ≤ τr ≤ . . . ≤ τ1}.

For θ = (aτ1 , . . . , aτr) ∈ Θ+, we have, by Lemma 5.2, that

ΔP0(θ)−1 =
∏

1≤i≤r

aδ(m−2i+2−2ε)
τi ,

and hence
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|ΔP0(θ)|−1
A =

∏
1≤i≤r

q−δτi(m−2i+2−2ε).

Thus we have ∫
Θ+

∏
λ

sup(1, |λ(θ)|−1
A )mλ · |ΔP0(θ)|−1

A dθ

=
∑

0≤τr≤...≤τ1

∏
1≤i≤r

q−δτi(m−n−2i+2−2ε)

= c1 . . . cr−1
∑
τr≥0

q−rδτr(m−n−r+1−2ε),

where cj = (1 − q−δτj(m−n−j+1−2ε))−1.
Note that the above multiple series converges if and only if m − n − r + 1 − 2ε > 0, 

i.e. m − r > n + 2ε − 1. The desired result follows. �
Lemma 5.2. For θ = (aτ1 , . . . , aτr) ∈ Θ+, we have

ΔP0(θ)−1 =
∏

1≤i≤r

aδ(m−2i+2−2ε)
τi .

Proof. The restriction of Δ−1
P0

to T is the product of all the positive roots (see [40, p. 17]). 
Now the positive roots are the following: xi − xj and xi + xj for 1 ≤ i < j ≤ r, each 
with multiplicity δ; xi and 2xi for 1 ≤ i ≤ r, with multiplicities δ(m − 2r) and δ(1 − ε)
respectively (see [40, p. 76]). So the sum of all the positive roots are

2δx1(r − 1) + 2δx2(r − 2) + . . . + 2δxr−1 +
r∑

i=1
δ(m− 2r + 2 − 2ε)xi

=
r∑

i=1
δ(m− 2i + 2 − 2ε)xi. �

Now we can show the Siegel-Weil formula. We follow the proof of Thm. 5 on p. 76 of 
[40, n. 52].

Theorem 5.3. Assume that m > 2n + 4ε − 2. Let v be a place of k such that U(0)v
is not empty, and H ′

v a subgroup of Hv which acts transitively on U(b)v for any b ∈
Hern(k). Let ν be a positive measure on H(A)/H(k), invariant under H ′

v, such that 
ν(H(A)/H(k)) = 1 and that the integral

Iν(Φ) =
∫ ∑

ξ∈X(k)

Φ(hξ) · dν(h)

H(A)/H(k)
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is absolutely convergent for any Φ ∈ S(XA). Then we have

Iν(Φ) = E(Φ),

and for every b ∈ Hern(k) we have∫
H(A)/H(k)

∑
ξ∈U(b)k

Φ(hξ) · dν(h) =
∫

Φ dμb, (5.1)

where μb is the measure |θb|A determined on U(b)A by the gauge form θb defined in 
Theorem 3.7.

Proof. We proceed by induction on the rank n of X over A, where A = Mm(D) is 
equipped with an involution given by x �→ Q−1 · x∗ · Q, here Q is the invertible η-
hermitian matrix over D of order m which is used to define the η-hermitian form on V . 
We first show that the hypotheses made on v and ν with regard to X imply that v
and ν have similar properties with regard to each A-module X ′ of rank n′ ≤ n. Since 
all the A-modules of the same rank are isomorphic, it suffices to prove this assertion 
when X ′ is a submodule of X. Concerning the condition imposed on ν, the assertion is 
obvious. Concerning the place v, let Xv = X ⊗k kv, X ′

v = X ′ ⊗k kv, and Av = A ⊗k kv. 
Then Xv and X ′

v are Av-modules of rank denoted respectively by nv and n′
v. For every 

b′ ∈ Hern′(k), we denote by U ′(b′)v the set of elements x′ of X ′
v, of maximal rank in X ′

v, 
which satisfy iX′(x′) = b′. Consider first the hypothesis U(0)v �= ∅, which we want to 
show that it implies U ′(0)v �= ∅. Assume first that Av is of type (I), i.e. Av is of the form 
Mmv

(K), where mv is a positive integer and K is a division algebra over kv; the involution 
on Av is then defined by an involution on K, and by a matrix Qv ∈ Mmv

(K) which is 
ηv-hermitian with respect to this involution. Saying that U(0)v �= ∅ then amounts to 
saying that Qv is of Witt index ≥ nv, and U ′(0)v �= ∅ amounts similarly to saying that 
this index is ≥ n′

v; for n′ ≤ n, the first assertion implies obviously the second. If Av is 
of type (II), i.e. it is of the form Av = Mmv

(K) ⊕ Mmv
(K′), where K and K′ are two 

division algebras over kv which are anti-isomorphic, then U(0)v �= ∅ and U ′(0)v �= ∅
are respectively equivalent to mv ≥ 2nv and mv ≥ 2n′

v by [40, n. 23], and we draw the 
same conclusion; besides we note that, in this case, ε = 1

2 by [40, n. 26], thus m > 2n
by the assumption m > 2n + 4ε − 2, so that certainly U(0)v �= ∅ and U ′(0)v �= ∅. Next 
we consider the transitivity of H ′

v on the sets U(b)v, U ′(b′)v. Recall X = Mm×n(D), 
and identify X ′ with the submodule of X of elements of the form (x1, . . . , xn′ , 0, . . . , 0); 
denote by X ′′ the submodule of X of elements of the form (0, . . . , 0, xn′+1, . . . , xn), so 
that X = X ′ ⊕X ′′. Let b′ ∈ Hern′(k), and let b be the element of Hern(k) given by the 

matrix 
(
b′ 0
0 0

)
with n lines and n columns. Assume first that Av is of type (I); with 

the same notations as above, we can identify Hern(kv) with the space of ηv-hermitian 
matrices of nv lines and nv columns over K, and do the same for Hern′(kv). The canonical 
isomorphism of Hern(k) ⊗ kv onto Hern(kv) induces a k-linear mapping of Hern(k) into 
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Hern(kv). Let bv ∈ Hern(kv) be the image of b under this mapping; if b′v is the element 

of Hern′(kv) deduced similarly from b′, then bv =
(
b′v 0
0 0

)
. By [40, n. 19], U(b)v can be 

identified with the set of matrices x of mv lines and nv columns over K, of maximal rank 
(i.e. equal to nv), which satisfy Qv[x] := x∗ ·Qv · x = bv; we have a similar assertion for 
U ′(b′)v. By hypothesis, U(0)v is not empty, which means that Qv is of Witt index ≥ nv; 
we deduce easily that U(b)v is not empty; and we choose a ∈ U(b)v. Then, if a′, a′′ are 
the projections of a on X ′

v, X ′′
v for the decomposition Xv = X ′

v ⊕X ′′
v , we have

Qv[a] = Qv[(a′, a′′)] = bv =
(
b′v 0
0 0

)
,

thus Qv[a′] = b′v; moreover, as a is of maximal rank (equal to nv) in Xv, a′ must be of 
maximal rank (equal to n′

v) in X ′
v; thus a′ ∈ U ′(b′)v. Let then x′ ∈ U ′(b′)v. By Prop. 3 of 

[40, n. 22], there exists h ∈ Hv such that x′ = ha′. Then a and ha both belong to U(b)v, 
so that, by hypothesis, there exists h′ ∈ H ′

v such that ha = h′a, whence x′ = h′a′. This 
shows that H ′

v acts transitively on U ′(b′)v. The proof is similar when Av is of type (II).
Let then v and ν satisfy the hypotheses of Theorem 5.3 with regard to the module 

X. For n = 0, the assertion of the theorem is reduced to Iν = δ0, which is an obvious 
consequence of the hypothesis ν(H(A)/H(k)) = 1, here δ0 is the measure on X(A) given 
by δ0(Φ) = Φ(0). We proceed by induction on n, and suppose n ≥ 1. Since by hypothesis 
Iν(Φ) is convergent for any Φ ∈ S(X(A)), Lem. 2 on p. 5 of [40, n. 2] joint with Lem. 5 
on p. 194 of [39, n. 41] show immediately that Iν is a positive tempered measure. Now 
Thm. 6 on p. 193 of [39, n. 41] and Prop. 9 on p. 210 of [39, n. 51] show that Iν is 
invariant under G(k); it is also obviously invariant under Hv for a place v of k such that 
U(0)v is non-empty. Similarly, if we denote by Iν,b(Φ) the first member of (5.1), then 
Iν,b is a positive tempered measure. Let Iν,X be the sum of Iν,b for b ∈ Hern(k); we 
can consider Iν,X as defined by the integral similar to that which defines Iν , but where 
the summation is restricted to the elements ξ of X(k) which are of maximal rank in 
X(k). Similarly, for the submodule Xr of X, where 0 ≤ r ≤ n − 1, denote by Iν,Xr

the 
positive tempered measure defined by the integral similar to that which defines Iν,X , but 
where the summation is restricted to the elements ξ of Xr(k) which are of maximal rank 
in Xr(k). Taking into account of Theorem 3.7, we see that Theorem 5.3 for X implies 
that Iν,X = EX ; as a result, the induction hypothesis implies that Iν,Xr

= EXr
for the 

submodule Xr of X whenever r < n. Thus we have, by this hypothesis:

Iν =
∑

b∈Hern(k)

Iν,b +
∑

0≤r≤n−1
EXr

. (5.2)

According to Theorem 3.8, the second sum of the second member is just E − EX . On 
the other hand, according to Prop. 3 on p. 34 of [40, n. 22], those of U(b)k which are 
non-empty are orbits of H(k) in X(k); then formula (11) on p. 15 of [40, n. 7] shows that 
the measures Iν,b are respectively supported by U(b)A. Consequently, Iν satisfies all the 
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hypotheses of Theorem 4.5, thus Iν = E, and Iν,X = EX by (5.2). As Iν,b and μb are the 
restrictions of Iν,X and of EX to the set i−1

X ({b}) respectively, it follows that Iν,b = μb

for any b ∈ Hern(k).
This completes the proof of this theorem. �
Now we take for ν the Haar measure on H(A)/H(k) normalized by vol(H(A)/H(k)) =

1; then Iν(Φ) is just the theta integral I(Φ) defined before. We choose a place v of k
such that U(0)v is not empty (this holds for almost every v), and take H ′

v = Hv. Then 
this Haar measure and this place v satisfy the hypotheses of Theorem 5.3 (as can be 
seen from the proof of this theorem). Note that if m > 2n + 4ε − 2, then this implies 
automatically that r = 0 or m −r > n +2ε −1 (since r ≤ m

2 ), and thus I(Φ) is absolutely 
convergent, and I(Φ) = E(Φ) by the above theorem, for any Φ ∈ S(X(A)).

More generally, for Φ ∈ S(X(A)) and g ∈ ˜G(A), let

I(g,Φ) = I(ω(g)Φ).

Then the theta integral I(g, Φ) is absolutely convergent whenever r = 0 or m − r >

n + 2ε − 1.

Corollary 5.4. Assume m > 2n + 4ε − 2. Then for all Φ ∈ S(X(A)) and g ∈ ˜G(A),
(i) I(g, Φ) is absolutely convergent, E(g, s, Φ) is holomorphic at s = s0, where s0 =

α(m − n + 1 − 2ε)/2;
(ii) moreover, we have

I(g,Φ) = E(g, s0,Φ).

Remark 1. Let H1 = {h ∈ H : νK(h) = 1}, where νK : Mm(D) → K is the reduced norm, 
and we recall that K is the center of the division algebra D. For example, if D = k and 
V is a non-degenerate quadratic space over k, then H = O(V ) and H1 = H0 = SO(V ). 
When ε = 3

4 and m ≥ 2, or ε = 1 and m ≥ 3, we denote by H̃ the simply connected 
covering of H1 (the spin group). Now we can define the integrals I1(Φ) and Ĩ(Φ) by 
substituting H1 and H̃ (when defined) for H in the definition of the theta integral I(Φ)
respectively, with similarly normalized Haar measures. As in [40, n. 51–52], we can show 
that I1(Φ) and Ĩ(Φ) are absolutely convergent for any Φ ∈ S(X(A)) whenever r = 0 or 
m − r > n + 2ε − 1, and we can show analogues of Theorem 5.3 for I1(Φ) and Ĩ(Φ). We 
omit the details here.

Remark 2. As in [40, n. 53–56], Theorem 5.3 can be applied to study the Tamagawa 
numbers and the approximation theorems for groups of the form H, H1 or H̃ defined 
above. We refer to [40] for more information.

Remark 3. As in [31] and [24], we can derive a Rallis inner product formula over function 
fields from the Siegel-Weil formula established here and the basic identity of Piatetski-
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Shapiro and Rallis ([30, p. 3]). Since the Siegel-Weil formula established here only applies 
for m > 2n + 4ε − 2, the corresponding Rallis inner product formula is quite restrictive, 
and to establish a more general Rallis inner product formula will require more general 
Siegel-Weil formulas, as in the number field case (cf. [22], [4], [46], [5]). The derivation 
of the Rallis inner product formula over function fields is similar to that over number 
fields, and we omit the details.
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