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1. Introduction

Let (a,b,c,d, e, f)(n) denote the number of integral representations of n by the positive ternary
quadratic form ax® +by? +cz? +dyz+ezx+ fxy. We will take (a, b, ¢, d, e, f)(n) = 0, whenever n ¢ N.
The discriminant A of a ternary form ax? + by? + cz> + dyz + ezx + fxy is defined as
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1 2a f e
A:—det|:f 2b d:|:4abc+def—ad2—be2—cf2.
2 e d 2c

We say that two ternary quadratic forms f(x, y,z) and Z(x, y,z) with the discriminant A are in the
same genus if they are equivalent over Q via a matrix in GL(3, Q) whose entries have denominators
prime to 2A. We add that this is the case if and only if these forms are equivalent over the real
numbers and over the p-adic integers Z, for all primes p [6,11,16].

It is well known that all ternary forms with discriminant 4 are equivalent to x2 4+ y2 + z2 [10,12].
Let p be an odd prime. Lehman derived elegant counting formulas for ternary genera in [13]. Using
his results, it is straightforward to check that all ternary forms with the discriminant p2? belong to
the same genus, say TGy p. There are twelve genera of ternary forms with the discriminant 16p2.
However, if one imposes additional constraints on the forms with A = 16p2, namely

(a,b,c,d,e, f)(n)=0, whenn=1,2 (mod4),
d=e=f=0 (mod?2),

then we will show in Section 6 that all these ternaries belong to the same genus, say TGy p. In
Section 8 we will show how to relate TGy, and TG, , and Watson’s transformations.
Let s(n) denote the number of representations of n by ternary form x% + y% + z2, so

s(n)=(1,1,1,0,0,0)(n).
In [3] the first author utilized g-series techniques to prove the following two theorems:

Theorem 1.1.

s(9n) —3s(n) =2(1,1,3,0,0,1)(n) —4(4, 3,4,0,4,0)(n). (1.1)

Theorem 1.2.

s(25n) —5s(n) =4(2,2,2,-1,1,1)(n) — 8(7, 8,8, —4, 8, 8)(n). (1.2)
Our main object here is to prove the following

Theorem 1.3. Let p be an odd prime, then

R; R;
P -9 Y A (1.3)

a2 AP

s(p?n) — ps(n) = 48 Z

feTGy.

where |Aut(f)| denotes the number of integral automorphs of a ternary form f Rf(n) denotes the number of

representations of n by f, and a sum over forms in a genus should be understood to be the finite sum resulting
from taking a single representative from each equivalence class of forms.

This theorem was first stated in [3]. We remark that, somewhat similar in flavor, the so-called
S-genus identities were recently discussed in [4,5]. In what follows we will require the following
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Theorem 1.4.
16
s(n) = ;\/ﬁlﬁ(n)L(L X (m)Pm), (1.4)
where for n = 4%, 4 1 k one has
0 ifk=7 (mod 8),
Yn)y=1427° ifk =3 (mod 8), (1.5)

3.2791 jifk=1,2 (mod4);

L(1, x(n) = Zﬁf:l (—4n|m)m~1 with x (n) = (—4n|e), the Kronecker symbol and

P(n)_n(”1+l+ + ot : ) (16)
@'2)b|n / p/2 p/b—l p/b(]_(_np/—2b|p/)p/_1) ) .

with the product over all odd primes p’ such that p’? | n.

The proofs of this theorem may be found in [1] and [2]. We observe that L(1, x (n)) can be written
as the infinite product

2 1
L(1. x(m) = % ]_[<1 n (_nyp/)?) (1.7)

p’

where p’ runs through all odd primes.
Before we move on we comment that for squarefree n=3 (mod 8), n > 11

(1 X(n)) 5 Th(n)

where h(n) is the class number of the quadratic field Q (/—n).
2. The Siegel-Weil formula for ternary quadratic forms

Let T be a genus of positive ternary forms with the discriminant A. Then the Siegel-Weil for-
mula [14] implies that

R ()
Z (T)\/7 HdT p (), (21)

IAUt(f )I

where |Aut(f)| denotes the number of integral automorphs of a ternary form f = ax? + by? + cz% +
dyz +ezx+ fxy, while Rj;(n) denotes the number of representations of n by f. The sum on the left
is over forms in a genus. Again, this sum (here and everywhere) should be interpreted as the finite
sum resulting from taking a single representative from each equivalence class of forms. The product
on the right is over all primes, the mass of the genus is defined by

M(T):=) !

= 1Aut(p)|
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and dr ,(n) denotes the p’-adic (local) representation density, defined by

’

1
dr.p(n) := ﬁ]{(x, y,2)e Z3: ax* + by? + cz> +dyz + ezx + fxy =n (mod p'*)}

for sufficiently large t. We comment that ax® + by? + cz% + dyz + ezx + fxy can be chosen to be any
form € T. In [14] Siegel proved that when gcd(2A,p') =1

(7 + D+ s ((=mip) = 1) ifn=mp'?, p'tm,

d”,/(n) = (22)

(7 + DA = ) ifn=mp'2+1, p'fm.
It is not hard to check that (1.4) follows easily from (2.1) and (2.2), provided one recognizes that

V() =de, 2,250, (2.3)

where ¥ (n) is defined in (1.5). It is easy to check that

Gz 20 = 5ty 2 500,
and that
dx2+yz+zz’2(n) =0, ifn=7 (mod3). (2.4)
It remains to verify that

1 ifn=3 (mod 8),
e y2i72,2() = { 2 ifn=1,2 (mod 4).

(2.5)
This can be easily accomplished with the help of the following
Lemma 2.1. The number of roots of
¥=c (mod2'), 3<t,c=1 (mod2)

is four or zero, according as c =1 (mod 8) or c # 1 (mod 8).

The proof of this lemma may be found in [10]. Next, we observe that

{x.y.2) € 22 0<xy,2<2", ¥ +y*+722=n (mod 2°)}|
=4|{(y,0)€Z2* 0<y,z<2" yz=1(mod2)}|=4.2""".2"71

when n =3 (mod 8). Hence,

4
Ay y24 52 () = ﬁzf Ipt=1—q,

when n =3 (mod 8). Analogously, when n=1 (mod 8), 3 <t we find that
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{x.y.2)eZ> 0<x y,2<2", ¥ + y* + 2% =n (mod 2) }|
=3|{(x,y.20€Z2> 0<x y,2<2", x=1(mod 2), x* + y* + 2> =n (mod 2"} |

=3-4/{(y,2€2* 0<y,z<2", yz=0(mod 2), y =z (mod 4)}|

:3.4.1.2f*1.2f*1
3 .

And so

1 1 g 3
dX2+y2+Zz,2(n):ﬁ~3~4~E-Zt 2t =5 whenn=1 (mod 8),

as desired. Other cases in (2.5) can be handled in a very similar manner.
We can now rewrite (1.4) as

S(n) = Zﬂ«/ﬁl_[dxz_,'_yz_,_z;p/ (n)‘

p

Consequently,

s(p?n) — ps(n) = 27 /nyr (n) Iy (n) 1_[ dy2yy2472 (M), (2.6)
ged(p’,2p)=1
where
Ip(n) = p(dx2+y2+zz,p(p2n) — dx2+y2+22,p(n))-
From (2.2) we have at once
PRkl = (=mip)) ifn=mp*, pim,
Frm=1 5, 1 . 2%k+1 (2.7)
b1+ ) ifn=mp>*1, ptm.
A complete modern treatment of local densities is given in [17].
3. Computing some local representation densities. The non-dyadic case
In this section we prove
Theorem 3.1. Let p be an odd prime and u be any integer with (—u|p) = —1. Let G be some ternary genus
such that
f~pux*+p(y* +uz?)
forany f in G. Then
p
d(;,p(n) = pT_le(n) (3])

Here, and everywhere, the relation f ~p & means that the two quadratic forms f and g are equivalent over

the p-adic integers Zj.
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It should be noted that the above theorem is identical to the special case €, = —1 of Lemma 4.2,
stated in [5]. Here we take a self-contained approach, counting solutions of the relevant equation
modulo p* for large t. Suppose

ux* +p(y*+uz®)=n (mod p") withp?|n, 2<t

Then, thanks to (—u|p) = —1, we have p | x, p |y, p | z. This observation implies that
dgp(n) .
dg,p(np*) = #, if p2tn. (3.2)

Hence (3.1) holds true for all n if it holds true for all n such that p2 {n. There are two cases to
consider. First, when p {n we have that
{x,y.2)€23 0<x y,z<p", ux* + p(y* +uz?) =n (mod p') }|
=|{x y,20€Z% 0<x,y,z<p", x¥* =un—up(y* +uz®) (mod p')}|

p'=1p'-1

- Z Z (1+ ((un —up(y* +uz?))|p)) = p* (1 + (un|p)) = p*(1 — (—n|p)).

y=0 z=0

And so

1
dg p = ﬁp”(l — (-n|p)) = (1 — (-n|p)). (33)
We comment that in the discussion above we used the well-known

Lemma 3.2. Let p’ be an odd prime not dividing c. The number of roots of

xX¥*=c (modp"), t>1

is the same as the number (0 or 2) of roots when t = 1. That is

[{o<x<p': ¥* =c (mod p)}| =1+ (cIp).

This lemma is proved in [10].
Second, when n = pm and p{m we have that

{x.y.2)eZ> 0<x y,z<p", ux* + p(y* +uz?) = pm (mod p') }|

t—1

=p*[{(x.y.2)eZ2®: 0<x,y, z<p""!, upx® + y* + uz> =m (mod p" ') }|

=p*[{(.y.20eZ>: 0<x,y, z<p"" !, y* =m—upx* —uz* (mod p'')}|

t ]ptl-l

Z —upx® — uzz) |p))

1
2
x=0 z=0

((m — upx* —uz?)|p)
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ptf‘l_l p[71—1

— p2t +pt+l Z ((m _ u22)|p) — p2t _ pt-H Z ((_um +22)|p)
z=0 z=0

_ 1
— p 4 pttipt 2:p2t<1+5).

This time we used another well-known fact:

Y ((y*+a)lp)=-1, (3.4)

with p being an odd prime not dividing a.

Hence
1 1 1
dc,p:7p2t(1+_> = <1+_>, (35)
p p p
as desired.
Our proof of Theorem 3.1 is now complete.
4. Computing some local representation densities. The dyadic case
In this section we prove two theorems.

Theorem 4.1. Let G be some ternary genus such that

froyz—x?
forany f in Gy. Let n = 4%, 41k, then
3 ifk =7 (mod 8),
dg,2(M) =1 3 — 525 ifk=3(mod8), (41)
3— 25 ifk=1.2(mod 4).

Theorem 4.2. Let G, be some ternary genus such that

T 2

fr~4yz—x
forany f in G,. Let n = 4%, 41k, then
3 ifk=7 (mod 8),
de,2(n) = { 3— 52 ifk=3 (mod8), (4.2)

3—2  ifk=1,2(mod4).

Comparing (1.5), (4.1), and (4.2) we have at once

Y (n) =2dg, 2(n) —dg, 2(n). (4.3)
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We note two related recurrences
2dg,,2(n) —dg, 2(4n) =0

and

4dg, 2(n) —dg, 2(n) =3.

265

(4.4)

(4.5)

To prove Theorem 4.1 and Theorem 4.2, it is sufficient to show that (4.4) and (4.5), together with the

initial conditions

3 ifn=7(mod38),
dg,2(m)=4{1 ifn=3 (mod8),
0 ifn=1,2 (mod4),

hold true. Note that (4.4) follows easily from

Hx,y.2)e 23 0<x,y,2<2", 4yz—x* =4n (mod 2') }|

=2-4-4|{(x,y,20€ 2> 0<x,y,2<2"% yz—x*=n (mod 272)}|.

Clearly, when n=1,2 (mod 4) we have
4yz—n=2,3,6,7 (mod 8).
Recalling Lemma 2.1, we see that the congruence
4yz—x*=n (mod2")
has no solutions when ¢t > 3. Consequently,
dg,2(m)=0 ifn=1,2 (mod 4).

Next, when n =3 (mod 8) we have

{x.y.2)e 2 0<x,y,2<2", 4yz—x* =n (mod 2')}|

=4{(y,2€2%: 0<y,z<2, yz=1(mod 2)}| =4-271271 = 2%,

Hence
dg,2m)=1 ifn=3 (mod 8).
The case n=7 (mod 8) in (4.6) can be treated in an analogous manner:

Hx,y,20€2* 0<x,y,z<2", 4yz—x* =n (mod 2")}|

=4|{(y.29)€2*: 0<y,z<2", yz=0(mod 2)}| =4- (212" —2"12"1) =3. 2%

Hence

(4.6)
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dg,2(n)=3 ifn=7 (mod 8).

And so we have established the initial conditions (4.6). It remains to prove (4.5). We shall require the
following easy companion to Lemma 2.1:

Lemma4.3. Lett =25+ 3 + 5, with integers 0 < § < 1and 0 <s.
Let S¢(c) := |{0 < x < 2%: x% = ¢ (mod 20)}].
Then

2mt2ifo<m<s,
Se(4™- @Br+1))={ 25t ifm=s+1,
2518 ifm=s542.

When m = s + 2 the formula 4™ - (8r + 1) refers to 0, as then 2s + 4 >t and 4™ > 2¢; in fact 2t | 4™. It is
important to note that no 0 < ¢ < 2t other than the specified values above are allowed to have S¢(c) # 0.

To proceed further we define
Pit©)=|{(y.2)€2% 0<y,z<2", 47 lyz=c(mod 2)}|, i=1.2,
and
Cni={ceZ:0<c<2", c=4"(mod8-4™)}, mezZ.

Again we comment that when m = s+ 2 the condition ¢ =4™ (mod 8-4™) means ¢ = 0. It is not hard
to check that

2t+1 ifp=1 (mod 2),
4-Pre(n) — Pre(n) = { , m=lmed2) (47)
242 ifn =0 (mod 2),
and that for t =2s + 3 4§, with integers 0 <5 <1and 0<s
22372m+5 if 0 <m<s,
[Cmel=11 ifm=s+1, (4.8)
1 ifm=s+2.
Next, we define fori=1,2
Lie©=|{xy,20€2% 0<xy,z<2", 47 'yz—x* =c (mod 2)}|.
From Lemma 4.3 it is easy to see that
s+2
Ligm=)" Y S©OPicm+0), i=12
m=0ceCpn,t
Making use of Lemma 4.3, (4.7), and (4.8) we find that
s+2
4L —Laem)=)_ D S (4 Pre+0) = Prr(n+0)) =3 4" (49)

m=0ceCn,;
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Finally, we note that for sufficiently large t

1 :
dg,2(n) = EL”(H)’ i=1,2. (4.10)

Combining (4.9) and (4.10) we see that (4.5) holds true. Our proofs of Theorem 4.1 and Theorem 4.2
are now complete.

5. Computing the mass of the ternary genus TGy,
In this section we prove that

-1

M(TGy p) = % (5.1)
where p is a fixed odd prime and
M(TG1p) = > IAutlﬁ‘
feTGrp

To prove (5.1) we will employ the Smith-Minkowski-Siegel mass formula. This formula gives the mass
as an infinite product over all primes. Many published versions of this formula have small errors. In
this paper we will follow a reliable account by Conway and Sloane [9]. From Eq. (2) in [9] we have
that

1
M(TGy ) = — [12mp. (5.2)
p!
where p’ runs through all primes and where local masses m/p are defined in Eq. (3) in [9] by
_Tlum )" o) -nn 53
my =[[Mq ] (d'/9) : (53)
q q<q’

Here q ranges over all powers p’‘ of p’ (including those with negative t). The last factor in (5.3) is 1
for all odd primes. So if the p’-adic Jordan decomposition of f € TGy, is given by

Zquy
q
then

n(q) = dim(fy).

For all odd primes p’ such that p’1 p, the p’-adic Jordan decomposition of any form fe TGy,p can be
taken to be (x? + y? + z?); this follows from Theorem 29 in [16]. So with the aid of Table 2 in [9] we
find that

p/2

n(l):?), M]:m
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If g1 then

n(q) =0, Mg=1.

Hence

p/2

m/:M = —),
p 1 z(p/z_l)

p’t2p. (5.4)

Next, the p-adic Jordan decomposition of any form f € TGy,p is given by fl + pfp with f1 = ux?,

fp = (y* +uz?), for a unit u satisfying (—u|p) = —1 (see Section 6).

And so from Table 1 and Table 2 in [9], we see that n(1) =1, species(1) =1, M1 = 2, and n(p) =2,
species(p) =2, My = 2(p+]) And so we find that
= My (p/DE = 2 (5.5)
=PI = a1 '

Finally, one possible 2-adic Jordan decomposition of any form f € TGy,p is given by

fi+ fi+2f,

1
2

N =

with f% =2yz, fi = —x2, f» =0. This follows from Theorem 29 in [16]. We note that f> is a bound

love form. It contributes a factor of % to the mass

M 1
2= 5
Obviously n(3) =2, n(1) =1, and n(2) =
Next, f; is of the type II. It is bound and has octane value = 0, species = 3, M1 = % Also, ]‘1 is

of the type I;. It is free and has octane value =0 — 1 = —1, species =0+, M1 =1. ln (5.3), n(I, 1) is
the total number of pairs of adjacent constituents fq, fzq that are both of type I, and n(Il) is the sum
of the dimensions of all Jordan constituents that have type II. Clearly n(I,I) =0 and n(Il) = 2. So

2 1 2 1
my==(1)=(2/1)22°2 = _. 5.6
2 3( )2( /1) 6 (5.6)
Combining (5.2)-(5.6), we obtain
TGRSR S G (R G L
P 2 2 _1 " 2 p'2—
w+32(p+1) ecd@p.p)=1 p 87t *

Recalling that

we see that (5.1) holds true.
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6. A tale of two genera

Here we will give an overview of the construction of TG, ,. We are given TGy p. The sextuple

(a,b,c,d,e, f)

refers to

ax? 4+ by? + cz* + dyz +ezx + fxy,

with Gram matrix

2a f e
( f 2b d ) . (6.1)
e d 2c

First we will show that any form in TGy, is equivalent to a form in Convenient Shape 1, which is
just (a,b,c,d,e, f) with a=3 (mod 4), then d odd and e, f even. Any primitive form represents
an odd number, therefore it primitively represents an odd number a, so we may insist that a be odd.
A particularly simple operation taking a form to an equivalent one is constructing the form with Gram
matrix M;;,GM;j, where G is the current Gram matrix of the form and Mj; is the result of beginning
with the identity matrix and placing a single 1 at position ij, and M,fj denotes the transpose of M;;.
We can also permute variables with the matrix

10 O
Mo = (0 0 —1) . (6.2)
01 0

If e and f are both even we are done. Otherwise, at least one of them is odd. If f is the odd one
apply My, as in M{)GMO, to arrive at (a,c,b, —d, —f, e); call these the new values of all the letters
a,b,c,d,e, f. If d is even, apply M1y to get odd d in (a,a+b+ f,c,d+e,e, f+2a). If f is odd
apply Ms; to get even f in (a,b+c+d,c,d+ 2c,e, f +e). From the definition of the discriminant,
A = 4abc +def —ad? —be? —cf?, with A = p?> =1 (mod 4); it follows that b is even, so we have b, f
even and a, d odd. Finally, apply M»; to get even e in (a+b+ f,b,c,d,e+d, f+2b), where the new
value of a is still odd, while e has become even. With a,d odd and e, f even, all the terms in A =
4abc +def —ad® —be? — cf? are divisible by 4 except —ad?. Since d?> =1 (mod 4) and A =1 (mod 4),
it follows that a =3 (mod 4). Given a primitive form (a, b, c,d, e, f) in Convenient Shape 1, define a
mapping @ giving another primitive form by

@((a,b,c.d,e, f))=(a,4b,4c,4d, 2e,2f).

Note that if g(x,y,z) is in Convenient Shape 1 and h = &(g), then h(x, y,z) = g(x,2y, 2z). Any
primitive form (a,b,c,d,e, f) with d,e, f =0 (mod 2) that does not represent any number n =
1,2 (mod 4) has A =0 (mod 16) and can be put in (is equivalent to a form in) Convenient Shape 2,
that is with b, c,d, e, f all divisible by 4, and with a =3 (mod 4).

To save space, we will introduce matrices

1 00
E:(O 2 0),
00 2

and
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200
D:(O 1 0).
0 01

Note that DE = ED = 21. At this point we will give an outline of the proof that @ is a well-defined
bijection between TGy, and TG, p, that @ preserves automorphs, that TG, , is in fact a genus, and
finally give the p-adic diagonalization for all these forms, along with a 2-adic Jordan decomposition.
Given a primitive form g in Convenient Shape 1, with Gram matrix G, the Gram matrix for @(g) is
EGE. Furthermore @(g) is also primitive. Now, suppose that forms g,h in TGy, are equivalent and
are already in Convenient Shape 1. Suppose they have Gram matrices G and H, respectively. So we are
saying there is an integral matrix P such that P’GP = H. It turns out that matrix elements p»1, P31
are even, and so %DPE is integral. But then

<1DPE> (EGE)(lDPE> = (lEP’D>(EGE)(lDPE>
2 2 2 2
= EP'GPE
= EHE. (6.3)

That is, the equivalence class of @(g) does not depend on the particular choice of Convenient Shape 1.
Therefore @ extends to a well-defined mapping from the equivalence classes of forms in TGy, to
forms with A = 16p? that are classically integral and do not represent any numbers n with n =
1,2 (mod 4).

Now, let us take the collection of all the forms with A = 16p? that are primitive, classically inte-
gral, and do not represent any numbers n with n=1,2 (mod 4) and call that TG, p. It is not difficult
to show that such forms can be put into Convenient Shape 2, with Gram matrix H. Then %DHD is
the Gram matrix of a form in TGy p. It is not difficult to show that this “downwards” map also re-
spects equivalence classes of forms, and the choice of Convenient Shape 2 does not matter. Therefore
it is legitimate to name this mapping @ 1. As @ and &~ really are inverses, it follows that both are
injective and surjective.

Suppose g and h are in TGy,p and in Convenient Shape 1, with Gram matrices G; and Hj, respec-
tively. As they are in the same genus, there is an odd number w not divisible by p, along with an
integral matrix R, such that

R'G1R = w?H;,
and

detGq =detH;.

This is Siegel's definition of a genus: rational equivalence “without essential denominator”. Let & (g)
have Gram matrix G,, while @ (h) has Gram matrix H,. Then Q = 1DRE is integral, and we have

Q'G2Q = w?Q;.

That is, @(g) and @ (h) are in the same genus, which we are calling TG, ,. Next, if A is an automorph
of g e TGy p, in Convenient Shape 1, with Gram matrix G, this means that A has determinant £1 and

A'GA=G.

So, repeating (6.3), we find that B = %DAE is an automorph of &(g). At the same time, beginning
with h € TG, p, in Convenient Shape 2, with Gram matrix H, and an automorph B solving B'HB = H,
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then A= 1EQD is an automorph of @ ~1(h). That is, the number of automorphs are the same, from
which it follows that the mass of TGy p is exactly the same as the mass of TGy p. That is,

-1
M(TGy,p) = M(TGy ) = %. (6.4)

A very similar formalism shows directly that

Rg(n) = Ro g (4n),

where these are the (finite) number of representations by the indicated form. Now, from Theorem 29
in [16], we know that all forms in TGy, are equivalent over the 2-adic integers to yz — x2, or
(-1,0,0,1,0,0) which is integral and is in Convenient Shape 1. The same process that took some
g € TGy, and constructed automorphs or equivalences involving ®(g) can be readily extended to the
2-adic integers. So we begin with g ~, (—1,0,0, 1,0, 0) which shows that

@(g) ~2 @((—1,0,0,1,0,0)) =(—1,0,0,4,0,0).

So it follows that for any h € TG, p, h is equivalent over the 2-adic integers to 4yz — x2, which is in
Convenient Shape 2. So we have proved the following identities

g~ yz—x*, geTGip,

h~y4yz—x*, heTGyp. (6.5)

Now let us turn to the p-adic diagonalization of these forms, which requires more terminology. The
forms in either genus are isotropic in the 2-adic field, as there are nontrivial integral expressions with
yz—x* =0 or 4yz—x* =0. It follows that the forms in both genera are anisotropic (not “zero forms”)
in the p-adic field. This is from Lemma 1.1 in [6, page 76]. What sort of numbers are represented by
these forms? According to Corollary 13 in [11, page 41], some number n is represented by g(x, y,z) €
TGy,p in Qp if and only if

hix,y,z,w)=gx,y,2) — nw?

is isotropic in Qp. The determinant of h is —np?. This is a square in Q, if (—n|p) = 1. We already
know that ¢, (h) = c,(g) = —1 by Lemma 2.3(iii) in [6, page 58]. Thus c,(h) = —(—1, —1),. Here
(a,b)p is the Hilbert Norm Residue Symbol. By Lemma 2.6 in [6, page 59], when (—n|p) =1 we have
h(x,y,z, w) = g(x, y,z) — nw? anisotropic in Q, and so n is not represented. So, for p =1 (mod 4),
forms in TGy, and TGy, represent only quadratic nonresidues modulo p, among the numbers not
divisible by p. For p =3 (mod 4), forms in TGy , and TG, , represent only quadratic residues mod-
ulo p. Let p be an odd prime and u be any integer with (—u|p) = —1. From the fact that any binary
form ax? + bxy + cy? with discriminant not divisible by p represents both residues and nonresidues
modulo p, it follows that g € TGy, diagonalizes as ux® + p(vy? + wz?). Now, given any number V
with (—=V|p) =1, it follows that x% + Vx% is isotropic in Qp. As our forms are anisotropic there, it
follows that (—vw|p) = —1. Meanwhile, as v, w are units in Q,, we know that the binary vy? 4+ wz?
represents both residues and nonresidues modulo p. From Lemma 3.4 in [6, page 115], we can insist
that v=1 and w =u, so that

g~p ux? —|—p(y2 + uzz), with (—u|p) =—1, g€ TGy p. (6.6)

By the usual methods, the same applies to TG ,. And so
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h~pux*+p(y* +uz?), with (—u|p)=—1, heTGyp. (6.7)
It turns out that our bijection @ is an instance of a Watson transformation [15]. As a result, the
bijection generalizes to positive ternary forms with any odd discriminant. We will discuss this further
in Section 8.

7. Proof of Theorem 1.3

Here we prove our main result (1.3). We recall that, thanks to Theorem 29 in [16], we have
frp @ +yr+ 2,

for any ternary form ]‘ with discriminant A, provided prime p’{2A.
Hence

dTGl,p.p’ = dTGz,p.p’ = dx2+y2+zz,p/’ p/J(Zp. (71)

Next, we employ (2.1), (2.6), (3.1), (4.3), (6.4), (6.5), (6.6), (6.7), and (7.1) to rewrite the expression on
the right of (1.3) as

-1 n
RHS (1.3)= 2967 /?(dew,z(n)—dn;zvp,z(n)) o []  deqeie,®

4 -1
8 4 ged(p’,2p)=1
=2m/n(2d1G, ,2(0) — d1g,, 2) () [ dizyyeysz ()
ged(p’,2p)=1
=2zvnymIpm)  []  degyege ) =LHS(13).

ged(p’,.2p)=1

This completes our proof of Theorem 1.3.
We conclude this section with the following example. Genus TGy, 73 consists of four classes

TGy,73 = {Cl(hy1), Cl(hy), Cl(h3), Cl(hg)},
where
hi(x,y,2) =316 + 5y* + 112% + yz — 14zx + 6xy,  |Aut(hy)| =2,
ha(x,y,2) = 15x* + 14y* + 102 + 7yz + 4zx + 16xy,  |Aut(hy)| =2,

h3(x,y,2) = 116* + 7y* +202% + Tyz + 2zx + 4xy,  |Aut(h3)| =4,
ha(x,y,2) =7x* + 11y* + 212 + 11yz + 2zx + 4xy,  |Aut(hs)| = 4.

Note that all four forms above are in Convenient Shape 1. And so, we can immediately construct the
second genus

TGa,73 = {Cl(g1), Cl(g2), Cl(g3), Cl(ga) ).

where
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g1(x, y,2) =31x* +20y* + 447 + 4yz — 28zx + 12xy,  |Aut(g))| =2,
g2(x,y,2) = 15x* + 56y* + 40z + 28yz + 8zx + 32xy,  |Aut(g)| =2,
g3(x,y,2) = 11x* +28y* + 80z + 28yz + 4zx + 8xy,  |Aut(g3)| =4,

24(x, ¥, 2) = 7x* + 44y* + 847% + 44yz + 4zx + 8xy, |Aut(gs)| = 4.

From (1.3) we get

5(73211) —73s(n) =24(31,5,11,1, —14, 6)(n) + 24(15, 14,10, 7, 4, 16)(n)
+12(11,7,20,7,2,4)(n) +12(7,11,21,11, 2, 4)(n)
—48(31, 20, 44, 4, —28,12)(n) — 48(15, 56, 40, 28, 8, 32)(n)
—24(11, 28, 80, 28,4, 8)(n) — 24(7,44, 84,44, 4, 8)(n). (7.2)

8. Concluding remarks

In Section 6 we described a bijection between TGy, and TG, ,, mentioning that the bijection can
also be described as a Watson transformation in each direction, specifically 14. Here 14 refers to what
Watson called the m-mapping, with his parameter m = 4. Watson proved that his transformations
do not increase class number of a genus, number of spinor genera, or class number of each spinor
genus. He did not explicitly state that a transformation also induces an injective homomorphism
that takes the automorphism group into a subgroup of the automorphism group of the transformed
form, but this is easily proved using the methods of his article [15]. Watson himself, in the case of
positive forms, might well have chosen to say that his transformations do not decrease the size of
the automorphism group. In our situation, we have Aﬁ being the identity on TGy, and on TGy p.
As a result, in either direction, A4 is a bijection of equivalence classes which preserves automorphism
counts, finally preserving the mass of genera. Watson’s transformations are well documented in recent
literature, for example [7,8].

It is not necessary to have a Watson transformation in both directions to have a mass preserving
bijection. There is such a bijection between the classically integral genera G, G, described in the
table below. As before, let u be an integer such that (—u|p) = —1. The two genera are:

Genus A Level 2-adic p-adic Mass
Gy 4p? 4p 2yz—x2 ux® 4+ p(y? +uz?) (p—1)/32
Ga 64p> 8p 8yz — x* ux? + p(y? +uz?) (p—1)/32

where we take the definition of level as in [13]. Note that G1 and TGy, represent exactly the same
numbers, but with different representation measures. G, represents the subset of those same num-
bers that are not equivalent to 1,2,3,5,6 (mod 8). The Watson transformation A4 takes G, to G,
and is an automorph and mass preserving bijection. However, the inverse mapping is not a Watson
transformation.

We also note at this point that we could have defined TG, ; as the only genus with discriminant
16p2 and level 4p.
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