期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:200
An explicit correspondence of modular curves
Article
Chen, Imin1  Sharif, Parinaz Salari1 
[1] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
关键词: Modular curves;    Elliptic curves;   
DOI  :  10.1016/j.jnt.2018.12.003
来源: Elsevier
PDF
【 摘 要 】

In this paper, we recall an alternative proof of Merel's conjecture which asserts that a certain explicit correspondence gives the isogeny relation between the Jacobians associated to the normalizer of split and non-split Cartan subgroups. This alternative proof does not require extensive representation theory and can be formulated in terms of finite field analogues of the complex plane minus the real line. Secondly, we generalize these arguments to exhibit an explicit correspondence which gives the isogeny relation between the Jacobians associated to split and non-split Cartan subgroups. An interesting feature is that the required explicit correspondence is considerably more complicated but can expressed as a certain linear combination of double coset operators whose coefficients we are able to make explicit. (C) 2019 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2018_12_003.pdf 387KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次