期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:183 |
On the cyclic torsion of elliptic curves over cubic number fields | |
Article | |
Wang, Jian1,2  | |
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA | |
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China | |
关键词: Torsion subgroup; Elliptic curves; Modular curves; | |
DOI : 10.1016/j.jnt.2017.08.001 | |
来源: Elsevier | |
【 摘 要 】
Let E be an elliptic curve defined over a number field K. Then its Mordell-Weil group E(K) is finitely generated: E(K) congruent to E{K)(tor) x Z(r) . In this paper, we discuss the cyclic torsion subgroup of elliptic curves over cubic number fields. For N = 169, 143, 91, 65, 77 or 55, we show that Z/NZ is not a subgroup of E(K)(tor) for any elliptic curve E over a cubic number field K. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2017_08_001.pdf | 400KB | download |