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For a fixed elliptic E over a field K, the torsion component E(K)tor can be calculated 
due to the Nagell–Lutz–Cassels theorem [3]. However, if we consider a class of elliptic 
curves, it is usually difficult to list exactly all the possible group structures of E(K)tor. 
The following problem is one of this kind.

Problem 1.1. For an integer d ≥ 1, what are the possible group structures of E(K)tor
with [K : Q] = d?

For d = 1, i.e. K = Q, by the work of Kubert [20] and Mazur [23], the torsion group 
E(Q)tor of an elliptic curve E over the rational number field is isomorphic to one of the 
following:

Z/mZ, m = 1 − 10, 12;

Z/2Z× Z/2mZ, m = 1 − 4.

For d = 2, by the work of Kenku–Momose [18] and Kamienny [14], the torsion group 
E(K)tor of an elliptic curve over a quadratic number field is isomorphic to one of the 
following:

Z/mZ, m = 1 − 16, 18;

Z/2Z× Z/2mZ, m = 1 − 6;

Z/3Z× Z/3mZ, m = 1 − 2;

Z/4Z× Z/4Z.

For d = 3, Parent [33,34] showed that the prime divisors of the order of E(K)tor
are ≤ 13. Jeon–Kim–Schweizer [13] determined all the torsion structures that appear 
infinitely often when we run through all elliptic curves over all cubic fields:

Z/mZ, m = 1 − 16, 18, 20;

Z/2Z× Z/2mZ, m = 1 − 7.

Najman [27] discovered a sporadic elliptic curve over a cubic field with torsion group 
isomorphic to Z/21Z. In view of these facts, our ultimate aim is to show that the torsion 
group E(K)tor of an elliptic curve E over a cubic number field is isomorphic to one of 
the following:

Z/mZ, m = 1 − 16, 18, 20 − 21;

Z/2Z× Z/2mZ, m = 1 − 7.

For the cyclic case, it suffices to show that Z/NZ is not a subgroup of E(K)tor for any 
elliptic curve E over a cubic number field K when N is among the following list
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N = 169, 121, 49, 25, 27, 32;

N = 143, 91, 65, 39, 26, 77, 55, 33, 22, 35, 63, 42, 28, 45, 30, 40, 36, 24.

The main result of this paper is the following:

Theorem 1.2. If N = 169, 143, 91, 65, 77 or 55, then Z/NZ is not a subgroup of E(K)tor
for any elliptic curve E over a cubic number field K.

2. Preliminaries

Let H = {z ∈ C | Imz > 0} be the upper half plane. Let H = H ∪ P1(Q) be the 
extended upper half plane by adjoining cusps P1(Q) = Q ∪ {∞} to H. Let N be a 
positive integer. Let

Γ0(N) =
{(

a b

c d

)
∈ SL2(Z)/(±1)|c ≡ 0 mod N

}

Γ1(N) =
{(

a b

c d

)
∈ Γ0(N)|a ≡ d ≡ 1 mod N

}

be the congruence subgroups and let X1(N) (resp. X0(N)) be the modular curve 
which corresponds to the modular group Γ1(N) (resp. Γ0(N)). We denote by Y1(N) =
X1(N)\{cusps}, Y0(N) = X0(N)\{cusps} the corresponding affine curves. Denote by 
J1(N) (respectively, J0(N)) the jacobian of X1(N) (respectively, X0(N)).

For a modular curve X, let X(d) be the d-th symmetric power of X, i.e. the quotient 
space of the d-fold product Xd by the action of the symmetric group Sd permuting the 
factors. Let Q be the algebraic closure of Q. Then X(d)(Q), the set of algebraic points of 
X(d), corresponds one-to-one to the set {P1 + · · ·+Pd; Pi ∈ X(Q)} of positive Q-rational 
divisors of degree d of X.

Let K be a number field of degree d over Q. Let x ∈ X(K). Let x1, · · · , xd be the 
images of x under the distinct embeddings τi : K ↪−→ C, 1 ≤ i ≤ d. We may view 
x1 + · · · + xd is a Q-rational point of X(d). Define

Φ : X(d) −→ JX

by Φ(P1 + · · · + Pd) = [P1 + · · · + Pd − d∞] where JX is the jacobian of X, and [ ]
denotes the divisor class.

For a modular curve X over C, X is called d-gonal if there exists a finite C-morphism 
π : X −→ P1

C
of degree d. The minimum d is called the gonality of X, which we denote 

as Gon(X). The following lemma is a generalization of proposition 1(i) in Frey [8].

Lemma 2.1 (Frey). Assume that Gon(X) > d. Then Φ is injective.
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Proof. Suppose otherwise Φ is not injective, i.e. there exist different P1 + · · · + Pd and 
Q1 + · · · + Qd in X(d) such that Φ(P1 + · · · + Pd) = Φ(Q1 + · · · + Qd), then

[P1 + · · · + Pd − d∞] = [Q1 + · · · + Qd − d∞] ∈ JX

then there is a nonconstant function f ∈ C(X)∗ such that

div(f) = (P1 + · · · + Pd − d∞) − (Q1 + · · · + Qd − d∞)

= P1 + · · · + Pd −Q1 − · · · −Qd

which means f has a pole divisor of degree ≤ d. Consider the map π : X −→ P1
C

defined 
by P 
−→ [f(P ), 1]. Then the degree of π is equal to the degree of pole divisor of f . This 
contradicts the assumption Gon(X) > d. �

We are interested in the gonality of the modular curve X0(N) over C. Since the 1-gonal 
curves are precisely the curves of genus 0, then X0(N) is 1-gonal if and only if N is among 
the fifteen values N = 1 − 10, 12, 13, 16, 18, 25 with genus 0. The complete list of 2-gonal 
X0(N) was determined by Ogg [30], and that of 3-gonal ones by Hasegawa–Shimura [11].

Proposition 2.2 (Ogg). The modular curve X0(N) is 2-gonal if and only if N is one of 
the following:

N = 1 − 10, 12, 13, 16, 18, 25 (g = 0);

N = 11, 14, 15, 17, 19 − 21, 24, 27, 32, 36, 49 (g = 1);

N = 22, 23, 26, 28, 29, 31, 37, 50 (g = 2);

N = 30, 33, 35, 39, 40, 41, 48 (g = 3);

N = 47 (g = 4);

N = 46, 59 (g = 5);

N = 71 (g = 6).

Proposition 2.3 (Hasegawa–Shimura). The modular curve X0(N) is 3-gonal if and only 
if N is one of the following:

N = 1 − 10, 12, 13, 16, 18, 25 (g = 0);

N = 11, 14, 15, 17, 19 − 21, 24, 27, 32, 36, 49 (g = 1);

N = 22, 23, 26, 28, 29, 31, 37, 50 (g = 2);

N = 34, 43, 45, 64 (g = 3);

N = 38, 44, 53, 54, 61, 81 (g = 4).
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The moduli interpretation of a noncuspidal point of X1(N) is (E, ±P ), where E is an 
elliptic curve and P ∈ E is a point of order N . The moduli interpretation of a noncuspidal 
point of X0(N) is (E, C), where E is an elliptic curve and C ⊂ E is a cyclic subgroup 
of order N . The map π : X1(N) −→ X0(N) sends (E, ±P ) to (E, 〈P 〉), where 〈P 〉 is the 
cyclic subgroup generated by P .

Let p be a prime such that p � N . Igusa’s theorem [12] says that the modular curves 
X1(N) and X0(N) have good reduction at prime p. Moreover, reducing the modular curve 
is compatible with reducing the moduli interpretation (see for example [31, Theorem 1]). 
And the description of the cusps is the same in characteristic p as in characteristic 0.

Let k = Fq be the finite field with q = pn elements. Let E/k be an elliptic curve 
over k. Let |E(k)| be the number of points of E over k. Then Hasse’s theorem states 
that

||E(k)| − q − 1| ≤ 2√q

i.e.

(1 −
√
pn)2 ≤ |E(k)| ≤ (1 +

√
pn)2

The description of the reduction types of elliptic curves in terms of the language of 
Néron models can be summarized as the Kodaira–Néron theorem [19], [28]. A complete 
proof of this theorem can be found in [36, IV §8 §9].

Theorem 2.4 (Kodaira–Néron). Let R be a Dedekind domain with field of fractions K, 
let E be a Néron model over R for an elliptic curve E/K, and let ℘ ⊂ R be any nonzero 
prime ideal with residue field k. Let Ẽ be the fiber over k of E.

(1): If E has good reduction at ℘, then Ẽ(k) = Ẽ(k)0 is an elliptic curve, where Ẽ(k)0
denotes the connected component of the identity.

(2): If E has additive reduction at ℘, then Ẽ(k)0 ∼= Ga/k, and Ẽ(k)/Ẽ(k)0 = G is a 
finite group of order at most four.

(3): If E has multiplicative reduction at ℘, then there exists an extension K of k of 
degree at most two so that Ẽ(K )0 ∼= Gm/K and Ẽ(K )/Ẽ(K )0 ∼= Z/nZ for some 
positive integer n.

Let K be a number field with ring of integers OK , ℘ ⊂ OK a prime ideal lying 
above p, k = Fq = OK/℘ its residue field. Let E be an elliptic curve over K and 
P ∈ E(K) a point of order N . Let Ẽ be the fiber over k of the Néron model of E, and 
let P̃ ∈ Ẽ(k) be the reduction of P . Suppose that p � N . Then elementary theory of 
group schemes shows that P̃ has order N due to the following well-known result (see for 
example [2, §7.3 Proposition 3]).
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Proposition 2.5. Let m be a positive integer relatively prime to char(k). Then the reduc-
tion map

E(K)[m] −→ Ẽ(k)

is injective.

The Néron–Kodaira theorem leads to Deligne–Rapoport’s treatment of modular 
curves as moduli scheme of generalized elliptic curves [5]. Katz–Mazur [17] developed 
the theory of Drinfeld level structures on elliptic curves. Conrad [4] improved this theory 
by extending it on to generalized elliptic curves. We explain here the notions and results 
in these theories that are necessary in Section 3.

Let n ≥ 1 be an integer and let k be a field. The Néron n-gon over k, denoted Cn, is 
the quotient of (P1)k×Z/nZ where (∞, i) is identified with (0, i +1). It has n irreducible 
components (P1)k × d, d ∈ Z/nZ, of which (P1)k × 0 is called the identity component. 
The smooth locus Csm

n = Gm ×Z/nZ of Cn is a group. Furthermore, the action of Csm
n

on itself extends to an action of Csm
n on all of Cn: the Gm part fixes the singular points. 

The N -torsion part Csm
n [n] has order n2. In fact, there is a natural short exact sequence

0 −→ μn −→ Csm
n [n] −→ Z/nZ −→ 0

where the μn sits in the identity component of Csm
n .

A generalized elliptic curve over a base scheme S is a tuple (E, +, e), where E/S is a 
proper flat curve, e ∈ E(S), and + is a map Esm × E −→ E such that: (1) + (with e) 
gives Esm the structure of a group and defines an action on E; (2) the geometric fibers 
of E are elliptic curves or Néron n-gons.

Denote S = Spec Z. For N ≥ 5, X1(N)/S is the fine moduli scheme which classify the 
generalized elliptic curves E with a torsion point P of order N ; X0(N)/S is the coarse 
moduli scheme which classify the generalized elliptic curves E with a cyclic subgroup C
of order N . There is a natural morphism X1(N)/S −→ X0(N)/S : (E, ±P ) 
−→ (E, 〈P 〉), 
where 〈P 〉 is the cyclic subgroup generated by P .

Now we can describe the moduli interpretation of the cusps on the generic fiber X1(N)
(resp. X0(N)) of X1(N)/S (resp. X0(N)/S). The moduli interpretation of cusps of X1(N)
is that for each d | N , one has cusps (Cd, (ζrN , b)) where b ∈ (Z/dZ)× and r ∈ Z/NZ

maps to a unit in Z/(N/d)Z. It is easy to see (ζrN , b) is a point of order N in the smooth 
locus Csm

d = Gm × Z/dZ. The moduli interpretation of cusps of X0(N) is that for each 
d | N , one has cusps (Cd, G), where G is a cyclic subgroup of order N in the smooth 
locus Csm

d = Gm×Z/dZ that meets all the irreducible components. Especially for d = 1
and d = N , we have the cusps (C1, μN ) and (CN , Z/NZ), which we denote as 0 and ∞
respectively. Note that 0 is distinguished from ∞ by the fact that μN lives in the identity 
component.

In the following section, we use a specialization lemma in Appendix of Katz [16] and 
a theorem of Manin [21] and Drinfeld [7].
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Lemma 2.6 (Specialization lemma). Let K be a number field. Let ℘ ⊂ OK be a prime 
above p. Let A/K be an abelian variety. Suppose the ramification index e℘(K/Q) < p −1. 
Then the reduction map

Ψ : A(K)tor −→ A(Fp)

is injective.

Theorem 2.7 (Manin–Drinfeld). Let C ⊂ SL2(Z)/(±1) be a congruence subgroup. x, y ∈
P1(Q) and x, y are the images of x and y respectively, on H/C. Then the class of divisors 
(x) − (y) on curve H/C has finite order.

3. Method

When N is a rational prime number, Kamienny [15] established a criterion for the 
nonexistence of elliptic curves E with a point of order N over a number field of degree d. 
This criterion is refined by Merel [26] in which the Eisenstein quotient is replaced by 
the winding quotient and the linear independence condition of weight-two cusp forms 
is replaced by the linear independence of the Hecke operators on the winding element. 
This type of Kamienny’s criterion for the general N is proved by Parent [32]. (In Parent’s 
paper, he assumed N to be a prime power for practical reason. But as he mentioned on 
page 86, Théorème 1.7 and the Kamienny’s criterion Théorème 1.8 are also true by 
taking directly at any positive integer level N .) Before giving this criterion, we have to 
explain the necessary knowledge.

Considering the first absolute singular homology group H1(X0(N); Z) and the homol-
ogy group relative to the cusps H1(X0(N), cusps; Z) of X0(N), the first being seen as a 
subgroup of the second. For (α, β) ∈ P1(Q)2, the modular symbol {α, β} is the element 
of H1(X0(N), cusps; Z) defined by the image in X0(N) of geodesic path of H connect-
ing α to β in H ∪ P1(Q). When Γ0(N)α = Γ0(N)β, we have {α, β} ∈ H1(X0(N); Z). 
Integration defines a classical isomorphism of real vector spaces:

H1(X0(N);Z) ⊗ R −→ HomC(H0(X0(N); Ω1),C)

γ ⊗ 1 
−→ (ω 
−→
∫
γ

ω)

The following lemma is a generalization of Lemma 18.6 in Mazur [23].

Lemma 3.1. The inverse image e of the linear form

ω 
−→
∫

{0,∞}

ω

in H1(X0(N); Z) ⊗ R is actually in H1(X0(N); Z) ⊗Q.
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Proof. Consider the exact sequence of topological groups:

0 H1(X0(N);Z) U
π

J0(N) 0

where U is the universal covering group of the jacobian J0(N) of X0(N). As a real Lie 
group, U is isomorphic to H1(X0(N); Z) ⊗ R and J0(N) is canonically isomorphic to 
H1(X0(N); Z) ⊗ (R/Z). From the definition, it is clear that π(e) = c = ((0) − (∞)) in 
J0(N). By Theorem 2.7, c has finite order, i.e. there is n ∈ Z≥0 such that n · c = 0. It 
follows that n · e ∈ H1(X0(N); Z). So e ∈ (1/n)H1(X0(N); Z) ⊂ H1(X0(N); Z) ⊗Q. �

This element e in Lemma 3.1 was first defined by Mazur [23] as the winding element. 
Denote T the algebra generated over Z by the Hecke operators Ti (i ≥ 1, integer), acting 
faithfully on H1(X0(N); Z) ⊗Q and on the jacobian J0(N) of the modular curve. Let Ae

be the annihilator ideal of e in T; we then define the winding quotient Je
0 as the quotient 

abelian variety J0(N)/AeJ0(N). Parent [32, Theorem 1.7] showed that Je
0 (Q) is finite.

The notion of formal immersion was introduced by Mazur [24] to indicate the mor-
phism that satisfies the equivalent conditions of EGA IV Proposition 17.4.4 from [10]. 
If f : X −→ Y is a morphism of finite type between Noetherian schemes, we shall say 
that f is a formal immersion at a point x if the induced map on the completions of local 
rings f̂ � : ÔY,f(x) −→ ÔX,x is surjective.

The following Lemma was known for experts but used without proof. Parent [32]
referred it to an unpublished paper of Oesterlé [29]. Arnold sketched a proof in a note [1]. 
For the sake of completeness, we write down his proof with more detailed clarification.

Lemma 3.2. Suppose that X is separated and that f : X −→ Y is a formal immersion at 
x ∈ X. Suppose that there is an integral Noetherian scheme T and two T -valued points 
p1, p2 ∈ X(T ) such that for some point t ∈ T we have x = p1(t) = p2(t). If moreover 
f ◦ p1 = f ◦ p2, then p1 = p2.

Proof. The subscheme A = {s ∈ T | p1(s) = p2(s)} ⊆ T is closed since X is separated. 
This is because in the following diagram i is a base change of Δ. So i is a closed immersion 
since Δ is a closed immersion and the property of closed immersion is stable under base 
change.

A = X ×X×X T
i

T

p1×p2

X
Δ

X ×X

We consider the canonical morphisms [9, EGA I, §2.4]

φT,t : SpecOT,t −→ T, φX,x : SpecOX,x −→ X.



J. Wang / Journal of Number Theory 183 (2018) 291–308 299
By [9, EGA I, Proposition 2.4.2], they are monomorphisms of ringed spaces. The image 
of φT,t (resp. φX,x) is exactly the set of all those generic points of the closed irreducible 
subschemes of T (resp. X) passing through t (resp. x).

Since T is integral, then T = (0), where (0) is the unique generic point of T . So we 
will have an inclusion sequence

(0) ⊆ SpecOT,t ⊆ A ⊆ T = (0)

if we can show that SpecOT,t −→ T factors through A. Hence we can assume that T
is local with closed point t. The maps pi : T −→ X then factor (uniquely) through 
SpecOX,x −→ X, so we may assume that X is local with closed point x. Now we have 
the following commutative diagram

SpecOT,t

φT,t

p2

p1

SpecOX,x

φX,x

A
i

T
p2

p1

X

In order to show that p1 = p2 : T ⇒ X, it suffices to show that p1 = p2 : SpecOT,t ⇒
SpecOX,x. This is equivalent to show that p�1 = p�2 : OX,x ⇒ OT,t. Consider the commu-
tative diagram

ÔY,f(x)
f̂�

ÔX,x

p̂�
2

p̂�
1

ÔT,t

OX,x

σX,x

p�
2

p�
1

OT,t

σT,t

Since T is an integral Noetherian scheme, then OT,t is a Noetherian integral domain. So 
the rightmost map σT,t : OT,t −→ ÔT,t is injective since ker(σT,t) =

⋂
n m

n
T,t = 0 by [22, 

Theorem 8.10(ii)]. Hence it will suffice to show that p̂�1 = p̂�2. The condition f ◦p1 = f ◦p2
implies p̂�1 ◦ f̂ � = p̂�2 ◦ f̂ �. And f̂ � : ÔY,f(x) −→ ÔX,x is surjective since f is a formal 
immersion at x. Therefore p̂�1 = p̂�2. �

Assume that N is large enough so that Gon(X0(N)) > d. Then by Lemma 2.1, we 
may define an embedding Φ : X0(N)(d) ↪→ J0(N). We compose this with the natural 
projection J0(N) −→ Je

0 to obtain a map f : X0(N)(d) −→ Je
0 . Denote S′ = SpecZ[1/N ]. 

Since X0(N) is a smooth scheme over S′, then X0(N)(d) is also a smooth scheme over S′. 
Since Je

0 is an abelian variety over Q, it has a Néron model Je
0/S′ . We also use f to denote 

the map f : X0(N)(d)′ −→ Je
′ . Parent [32] proved the following Kamienny’s criterion.
/S 0/S
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Proposition 3.3 (Kamienny’s criterion). Suppose p > 2 and p � N . The following (1) and 
(2) are equivalent. Furthermore, these two conditions are satisfied if (3) is true.

(1) The map f : X0(N)(d)/S′ −→ Je
0/S′ is a formal immersion along the section 

(∞, · · · , ∞) in characteristic p.
(2) T1e, · · · , Tde are Fp-linearly independent in Te/pTe.
(3) T1{0, ∞}, · · · , Tsd{0, ∞} are Fp-linearly independent in H1(X0(N), cusps, Z) ⊗ Fp

(here s is the smallest prime number not dividing N).

In order to apply this criterion in our cases, we need the following Lemma 3.4 and 
Lemma 3.6.

Lemma 3.4. Let N = qe11 · · · qenn be a positive integer with q1, · · · , qn distinct prime num-
bers. Let p � N be a prime number with N > (1 +

√
pd)2 and qejj � p2i−1, for all 1 ≤ j ≤ n

and all 1 ≤ i ≤ d. Suppose that E is an elliptic curve over a number field K of degree d
with P a K-rational point of order N , i.e. (E, ±P ) ∈ Y1(N)(K). Let x = π(E, ±P ) be 
the projection of (E, ±P ) on Y0(N)(K). Let ℘ be a prime of OK above p and let k be 
the residue field of ℘. Then x1/τ1(℘) = · · · = xd/τd(℘) = ∞/℘.

Proof. Let (Ẽ, P̃ ) be the reduction of (E, P ). It suffices to verify that E has multiplicative 
reduction at ℘ and π(E, ±P ) specialize to ∞.

If E has good reduction at ℘, then Ẽ is an elliptic curve with a k-rational point P̃ of 
order N . By the Hasse’s theorem, Ẽ(k) has order at most (1 +

√
pd)2. This is impossible 

under our assumption of N .
If E has additive reduction at ℘, then Ẽ(k)0 ∼= Ga/k with |Ga/k| = pi, i ≤ d and 

Ẽ(k)/Ẽ(k)0 ∼= G with |G| ≤ 4. Since P̃ is a k-rational point of order N in Ẽ, then N
divides |Ẽ(k)| = |Ga/k||G|, which is impossible under our assumption.

So E has multiplicative reduction at ℘, then over a quadratic extension K of k, we 
have an isomorphism Ẽ(K )0 ∼= Gm/K .

Suppose (E, P ) specialize to (Cn, (ζrN , b))) where Cn is a Néron n-gon with n < N

and (ζrN , b) is a point of order N in the smooth locus Csm
n = Gm/K × Z/nZ. Then the 

order of b in Z/dZ is ≤ n < N . Therefore, for a prime qj |(N/n), one has that (N/qj)P
specialize into the identity component Ẽ(K )0 ∼= Gm/K .

Now consider the point P ′ := (N/q
ej
j )P , whose specialization is of order qejj on 

Gm/K × Z/nZ. Write P̃ ′ = (P̃ ′
1, P̃

′
2) with P̃ ′

1 a point of Gm/K and P̃ ′
2 a point of Z/nZ. 

The fact that qej−1
j P ′ = (N/qj)P specializes into the identity component means that P̃ ′

2

has order dividing qej−1
j . So, the only possibility for P̃ ′ to have order qejj is then for P̃ ′

1
to be of that order. So qejj must divide the cardinality of K ∗, which itself must divide 
p2i − 1, where i is the degree of k over Fp. This contradicts our assumption of N .

So (E, P ) must specialize to (Cn, (ζrN , b))) where Cn is the Néron n-gon with n = N

and (ζrN , b) is a point of order N in the smooth locus Csm
N = Gm/K × Z/NZ. Hence 

π(E, ±P ) specialize to ∞ := (CN , Z/NZ). �
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Theorem 3.5. Let N = qe11 · · · qenn be an odd positive integer such that Gon(X0(N)) > d. 
Suppose there is a prime p � N , p > 2 satisfying:

(1) N > (1 +
√

pd)2 and qejj � p2i − 1, for all 1 ≤ j ≤ n and all 1 ≤ i ≤ d.
(2) T1{0, ∞}, · · · , T2d{0, ∞} are linearly independent mod p in H1(X0(N), cusps, Z).

Then for any elliptic curve E defined over a number field K with [K : Q] = d, the cyclic 
group Z/NZ is not a subgroup of E(K)tor.

Proof. The proof of this theorem is in essence the same as that of Theorem 3.3 in 
Kamienny [15]. Suppose we have a number field K with [K : Q] = d and an elliptic curve 
E defined over K such that Z/NZ ⊆ E(K)tor. Take a generator P of Z/NZ, then we have 
a noncuspidal point x = π(E, ±P ) on X0(N) of degree d. By Lemma 3.4, we have that the 
S-sections (x1, · · · , xd) and (∞, · · · , ∞) meet at the prime p. Consequently, we have that 
f(x1, · · · , xd)/p = f(∞, · · · , ∞)/p. However, the points f(x1, · · · , xd) and f(∞, · · · , ∞)
are both Q-rational. And we know Je

0 (Q) is finite [32, Theorem 1.7]. So by Lemma 2.6, 
the S-sections f(x1, · · · , xd) and f(∞, · · · , ∞) coincide. And by Proposition 3.3, f is a 
formal immersion at (∞, · · · , ∞)p. Therefore by Lemma 3.2, the sections (x1, · · · , xd)
and (∞, · · · , ∞) coincide. This contradicts our assumption that x is noncuspidal. �

In the special case when N is square free, and K is cubic, we can weaken the condition 
in Lemma 3.4 and get the following:

Lemma 3.6. Let N be a square free positive integer with g(X0(N)) > 0. Let p � N be 
a prime number with N > (1 +

√
p3)2 and N is coprime with p2 − 1. Suppose that 

E is an elliptic curve over a cubic number field K with P a K-rational point of or-
der N , i.e. y = (E, ±P ) ∈ Y1(N)(K). Let x = π(E, ±P ) be the projection of y on 
Y0(N)(K). Then there is a prime ℘ of OK above p with residue field k, such that either 
x1/τ1(℘) = · · · = x3/τ3(℘) = ∞/℘, or there is an Atkin–Lehner involution wn on X0(N)
with wn(x1)/τ1(℘) = · · · = wn(x3)/τ3(℘) = ∞/℘.

Proof. We can always choose ℘ such that the residue field k = OK/℘ has degree 1 or 3
over Fp. In fact, the decomposition of p in OK has the following five types

I : pOK = ℘ II : pOK = ℘3 III : pOK = ℘1℘2

IV : pOK = ℘1℘
2
2 V : pOK = ℘1℘2℘3

In type II , IV , V , all the primes over p have degree 1 residue field. In type I, the prime 
over p has degree 3 residue field. In type III , the degree of the residue fields of the two 
primes ℘1, ℘2 is 1 and 2 respectively. We choose the one with degree 1 residue field as ℘.

By the same reason as in the proof of Lemma 3.4, E has multiplicative reduction at ℘. 
If the degree of k over Fp is 1, since we assume N is coprime with p2 − 1, then the same 
reasoning as that in the proof of Lemma 3.4 leads to x1/τ1(℘) = · · · = x3/τ3(℘) = ∞/℘.
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If the degree of k over Fp is 3, consider the Galois closure L of K. Then either 
Gal(L/Q) = Z/3Z or Gal(L/Q) = S3. We claim that there is an element σ ∈ Gal(L/Q)
of order 3, such that (after a necessary rearrangement) the embeddings τi : K ↪−→ C, 
1 ≤ i ≤ 3 satisfy

τi = σi|K

In fact, if Gal(L/Q) = Z/3Z, then L = K, i.e. K/Q is a Galois extension. So 
Gal(K/Q) = {τ1, τ2, τ3}. Let σ be a generator of Gal(K/Q) = Z/3Z. Then, after a 
necessary rearrangement of τ1, τ2 and τ3, we have τi = σi.

Otherwise, if Gal(L/Q) = S3, then L/K is a quadratic extension. There is an element 
σ2 ∈ Gal(L/Q) of order 2 such that Gal(L/K) = 〈σ2〉. Let σ3 ∈ Gal(L/Q) be an element 
of order 3. Then Gal(L/Q) = 〈σ2, σ3〉. On the other hand, each τi extends to two 
embedding τi1, τi2 : L ↪−→ Q and Gal(L/Q) = {τ11, τ12, τ21, τ22, τ31, τ32}. Without loss 
of generality, suppose τ3 is the identity embedding, then {τ31, τ32} = {id, σ2}, and after 
a necessary rearrangement of τ1 and τ2, {τ11, τ12} = {σ3, σ3σ2}, {τ21, τ22} = {σ2

3 , σ
2
3σ2}. 

Let σ = σ3. Then τi = σi|K .
Let ℘′ be a prime of L over ℘ with residue field k′ = OL/℘

′ (which is an extension 
of k). It is known in algebraic number theory that the Frobenius φ ∈ Gal(k′/Fp) is the 
reduction from a Frobenius element σ′ = Frob℘′ in Gal(L/Q). It is easy to see k′ = k

since the highest order of an element in Gal(L/Q) is 3. Since the only elements of order 3
in Gal(L/Q) are σ and σ2, then either σ′ = σ or σ′ = σ2. Without loss of generality, let’s
suppose σ′ = σ. Then the following reduction diagram is commutative for all 1 ≤ i ≤ 3:

X1(N)
⊗Fp

τi

X̃1(N) π

φi

X̃0(N)

φi

X1(N)
⊗Fp

X̃1(N) π
X̃0(N)

Let y1, y2, y3 (resp. x1, x2, x3) be the images of y (resp. x) under the distinct 
embeddings τi : K ↪−→ C, 1 ≤ i ≤ 3. Since the action of Gal(Q/Q) on the covering 
X1(N) −→ X0(N) is compatible, i.e. the following diagram is commutative, we have 
xi = π(yi), 1 ≤ i ≤ 3.

X1(N)

π

τi
X1(N)

π

X0(N)
τi

X0(N)

Let c be a cusp of X1(N) such that

y ⊗ Fp = c⊗ Fp
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then for 1 ≤ i ≤ 3

yi ⊗ Fp = τi(y) ⊗ Fp = φi(y ⊗ Fp) = φi(c⊗ Fp) = τi(c) ⊗ Fp

We know that the action of each τi on the cusps factors through Gal(Q(ζN )/Q) ∼=
(Z/NZ)×. Suppose c is represented by (Cn, (ζrN , b)), then Gal(Q(ζN )/Q) ∼= (Z/NZ)×
acts on c as

(Cn, (ζrN , b))a = (Cn, (ζraN , b))

So all the τi(c) are in the form of (Cn, (ζrai

N , b)) for some ai ∈ (Z/NZ)×. Since N is 
square free, we know they all map to the unique cusp of the form (Cn, G) on X0(N). 
Denote (Cn, G) as cn. Then

xi ⊗ Fp = π(yi) ⊗ Fp = π(yi ⊗ Fp) = π(τi(c) ⊗ Fp) = π(τi(c)) ⊗ Fp = cn ⊗ Fp

We know the Atkin–Lehner involutions act transitively on the cusps of X0(N) if N
is square free. In fact, by applying the Atkin–Lehner involution wn one gets that 
wn(cn) = ∞. And because the reduction diagram

X0(N)

⊗Fp

wn

X0(N)

⊗Fp

X̃0(N)
wn

X̃0(N)

is commutative when the genus of X0(N) is positive (see Diamond–Shurman [6], Theo-
rem 8.5.7). So we have

wn(xi) ⊗ Fp = wn(xi ⊗ Fp) = wn(cn ⊗ Fp) = wn(cn) ⊗ Fp = ∞⊗ Fp

i.e.

wn(x1)/τ1(℘) = · · · = wn(x3)/τ3(℘) = wn(cn)/℘ = ∞/℘. �
Theorem 3.7. Let N be an odd square free positive integer such that Gon(X0(N)) > d

and the genus g(X0(N)) > 0. Suppose there is a prime p � N , p > 2 satisfying:

(1) N > (1 +
√

p3)2 and N is coprime with p2 − 1.
(2) T1{0, ∞}, · · · , T2d{0, ∞} are linearly independent mod p in H1(X0(N), cusps, Z).

Then for any elliptic curve E defined over a cubic number field K, the cyclic group Z/NZ

is not a subgroup of E(K)tor.
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Proof. With Lemma 3.6 at hand, the proof of this theorem is exactly the same as that of 
Theorem 3.5 except replacing (x1, · · · , xd) by (wn(x1), · · · , wn(xd)) when necessary. �
4. Proof of Theorem 1.2

The calculations in this section are done in Sage [35]. The elements in H1(X0(N),
cusps, Z) can be represented by the Manin symbols (detailed description of this treatment 
can be found in Stein’s book [37, §3]). Under this representation, the element {0, ∞} is 
represented by the Manin symbol (0, 1). By Proposition 20 of Merel [25], the action of 
Hecke operators Tn on Manin symbols can be calculated by the formula:

Tn(x, y) =
∑

a>b≥0, d>c≥0, ad−bc=n

(x, y)
[(

a b

c d

)]
= (x, y)hn

where in the sum

hn =
∑

a>b≥0, d>c≥0, ad−bc=n

[(
a b

c d

)]
,

if

(x′, y′) = (x, y)
[(

a b

c d

)]
∈ (Z/NZ)2 and gcd(x′, y′, N) �= 1,

then we omit the corresponding summand.
When n is small enough such that gcd(x′, y′, N) = 1 for all summands, the formula 

is independent of the level N . Under this assumption, the first six hn’s are

h1 =
[(

1 0
0 1

)]

h2 =
[(

1 0
0 2

)]
+

[(
1 0
1 2

)]
+
[(

2 0
0 1

)]
+
[(

2 1
0 1

)]

h3 =
[(

1 0
0 3

)]
+

[(
1 0
1 3

)]
+
[(

1 0
2 3

)]
+
[(

3 0
0 1

)]
+

[(
3 1
0 1

)]

+
[(

3 2
0 1

)]
+
[(

2 1
1 2

)]

h4 =
[(

1 0
0 4

)]
+

[(
1 0
1 4

)]
+
[(

1 0
2 4

)]
+
[(

1 0
3 4

)]
+

[(
4 0
0 1

)]

+
[(

4 1
0 1

)]
+
[(

4 2
0 1

)]
+

[(
4 3
0 1

)]
+

[(
2 0
0 2

)]
+
[(

2 0
1 2

)]
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+
[(

2 1
0 2

)]
+

[(
2 1
2 3

)]
+
[(

3 2
1 2

)]

h5 =
[(

1 0
0 5

)]
+

[(
1 0
1 5

)]
+

[(
1 0
2 5

)]
+
[(

1 0
3 5

)]
+
[(

1 0
4 5

)]

+
[(

5 0
0 1

)]
+

[(
5 1
0 1

)]
+
[(

5 2
0 1

)]
+

[(
5 3
0 1

)]
+

[(
5 4
0 1

)]

+
[(

2 1
1 3

)]
+

[(
3 1
1 2

)]
+
[(

2 1
3 4

)]
+

[(
4 3
1 2

)]
+

[(
3 2
2 3

)]

h6 =
[(

1 0
0 6

)]
+

[(
1 0
1 6

)]
+

[(
1 0
2 6

)]
+
[(

1 0
3 6

)]
+
[(

1 0
4 6

)]

+
[(

1 0
5 6

)]
+

[(
6 0
0 1

)]
+
[(

6 1
0 1

)]
+

[(
6 2
0 1

)]
+

[(
6 3
0 1

)]

+
[(

6 4
0 1

)]
+

[(
6 5
0 1

)]
+
[(

2 0
0 3

)]
+

[(
2 0
1 3

)]
+

[(
2 0
2 3

)]

+
[(

2 1
0 3

)]
+

[(
3 0
0 2

)]
+
[(

3 1
0 2

)]
+

[(
3 2
0 2

)]
+

[(
3 0
1 2

)]

+
[(

2 1
2 4

)]
+

[(
4 2
1 2

)]
+
[(

2 1
4 5

)]
+

[(
5 4
1 2

)]
+

[(
3 2
3 4

)]

+
[(

4 3
2 3

)]

For N = 169, 143, 91, 65, 77, 55, the Manin basis of H1(X0(N), cusps, Z) is listed in 
Table 1. And the actions of T1, · · · , T6 on the Manin symbol (0, 1) in terms of the Manin 
basis are given in Table 2.

4.1. N = 169

It is seen in Table 2 that T1{0, ∞}, · · · , T6{0, ∞} are linearly independent mod 5. By 
Proposition 2.2 and 2.3, we know Gon(X0(169)) > 3. Since 169 � 52i − 1, i = 1, 2, 3, and 
169 > (1 +

√
53)2, then by Theorem 3.5, Z/169Z is not a subgroup of E(K)tor.

4.2. N = 143, 91, 65, 77, 55

It is seen in Table 2 that T1{0, ∞}, · · · , T6{0, ∞} are linearly independent mod 3. 
By Proposition 2.2 and 2.3, we know Gon(X0(N)) > 3. Since (N, 32 − 1) = 1 and 
N > (1 +

√
33)2, then by Theorem 3.7, Z/NZ is not a subgroup of E(K)tor.
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Table 1
Manin basis of H1(X0(N), cusps, Z).

N dim Manin basis of H1(X0(N), cusps, Z)
169 29 (1, 0), (1, 133), (1, 134), (1, 135), (1, 138), (1, 139), (1, 151), (1, 152), (1, 153), (1, 158),

(1, 159), (1, 160), (1, 163), (1, 164), (1, 165), (1, 166), (1, 167), (13, 1), (13, 2), (13, 3),
(13, 4), (13, 5), (13, 6), (13, 7), (13, 8), (13, 9), (13, 10), (13, 11), (13, 12)

143 29 (1, 0), (1, 83), (1, 113), (1, 127), (1, 128), (1, 135), (1, 139), (1, 140), (1, 141), (11, 3),
(11, 4), (11, 5), (11, 6), (11, 7), (11, 8), (11, 9), (11, 10), (11, 12), (13, 1), (13, 2),
(13, 3), (13, 4), (13, 5), (13, 6), (13, 7), (13, 8), (13, 9), (13, 10), (13, 11)

91 17 (1, 0), (7, 1), (7, 2), (7, 4), (7, 5), (7, 8), (7, 9), (7, 10), (7, 11), (7, 12),
(13, 1), (13, 2), (13, 3), (13, 4), (13, 5), (13, 6), (13, 7)

65 13 (1, 0), (5, 2), (5, 3), (5, 7), (5, 9), (5, 11), (5, 12), (5, 23), (13, 1), (13, 2),
(13, 3), (13, 4), (13, 5)

77 17 (1, 0), (1, 74), (1, 75), (7, 1), (7, 3), (7, 5), (7, 6), (7, 8), (7, 9), (7, 10),
(11, 1), (11, 2), (11, 3), (11, 4), (11, 5), (11, 6), (11, 7)

55 13 (1, 0), (1, 48), (5, 2), (5, 4), (5, 7), (5, 8), (5, 9), (5, 21), (11, 1), (11, 2),
(11, 3), (11, 4), (11, 5)

Table 2
Hecke operators on {0, ∞} in terms of Manin symbols.

N Ti Ti(0, 1)
169 T1 (−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

T2 (−3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T3 (−4, 0, 1,−1, 1,−1, 0, 1, 0, 0,−1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T4 (−7, 0, 0,−1, 1,−1, 0, 0, 0, 0, 0, 0,−1, 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T5 (−6, 0, 0,−2, 0, 0, 0, 1, 0, 0,−1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T6 (−12, 0, 3,−3, 2,−2, 0, 2, 0, 0,−2, 0, 1, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

143 T1 (−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T2 (−3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T3 (−4, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,−1,−1,−1, 1, 0, 0, 0, 0, 1,−1, 0, 1)
T4 (−7, 0, 0, 0, 1, 0, 1,−1, 3, 1, 0, 0, 0,−1, 0, 1, 1,−1, 0,−1, 0, 0, 0, 0, 0, 1,−1, 0, 1)
T5 (−6, 0, 0, 0, 1, 0, 1,−1, 1, 1,−1, 2, 0,−1, 2, 0, 1,−3,−2,−1, 0,−1, 2, 2,−1, 1,−1, 0, 1)
T6 (−12, 0, 0, 0, 1, 0, 1,−1, 4, 3,−1, 0, 1, 0, 0, 0, 3,−4,−3,−2, 2,−1, 1, 1,−1, 3,−2, 0, 2)

91 T1 (−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T2 (−3, 0, 1,−1,−1,−1,−1, 1, 1, 0, 0, 0, 1, 0, 0, 0,−1)
T3 (−4,−1, 1,−2, 0, 0,−2, 2, 1,−1, 1,−1, 2, 0,−1, 1,−2)
T4 (−7,−1, 3,−3,−2,−2,−3, 2, 3,−1, 1,−1, 3, 1,−1, 1,−4)
T5 (−6,−1, 1,−2,−1,−1,−2, 2, 1,−1, 1, 0, 2, 0, 0, 1,−4)
T6 (−12,−3, 4,−6,−2,−2,−6, 6, 4,−3, 3,−2, 6, 0,−2, 3,−8)

65 T1 (−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T2 (−3, 1,−1, 0, 1, 0,−1,−1,−1, 0, 1, 1,−1)
T3 (−4, 1,−1, 0, 2,−1,−2,−1,−2, 0, 2, 2,−2)
T4 (−7, 3,−2, 0, 4,−1,−4,−2,−4,−1, 3, 4,−2)
T5 (−5, 2,−2, 0, 2,−2,−4,−2,−3,−1, 3, 3,−1)
T6 (−12, 5,−4, 0, 6,−2,−7,−4,−6,−1, 6, 7,−6)

77 T1 (−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T2 (−3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T3 (−4, 0, 1, 0, 0, 1, 1, 0,−1, 0,−1, 0, 0, 0, 1,−1, 1)
T4 (−7, 0, 3, 0,−1, 1, 1,−1,−1, 0,−1, 0, 1, 1, 1,−1,−1)
T5 (−6, 0, 2,−1, 0, 2, 2, 0,−2,−1,−1, 0, 0, 0, 2,−1, 0)
T6 (−12, 0, 4,−1, 0, 3, 3, 0,−2,−1,−2, 0, 0, 0, 2,−2, 2)

55 T1 (−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T2 (−3, 0, 0, 1, 1,−1, 0,−1,−1, 1, 0, 0, 0)
T3 (−4, 0,−1, 2, 2, 0,−1,−2,−2, 1, 1, 0, 0)
T4 (−7, 0, 0, 3, 3,−2, 0,−4,−3, 2, 0, 1, 0)
T5 (−5, 0,−1, 2, 2,−2,−1,−4,−3, 2, 0, 1, 1)
T6 (−12, 0,−2, 6, 6,−2,−2,−8,−6, 4, 2, 2,−2)
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