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In this paper, we recall an alternative proof of Merel’s 
conjecture which asserts that a certain explicit correspondence 
gives the isogeny relation between the Jacobians associated to 
the normalizer of split and non-split Cartan subgroups. This 
alternative proof does not require extensive representation 
theory and can be formulated in terms of finite field analogues 
of the complex plane minus the real line.
Secondly, we generalize these arguments to exhibit an explicit 
correspondence which gives the isogeny relation between 
the Jacobians associated to split and non-split Cartan 
subgroups. An interesting feature is that the required explicit 
correspondence is considerably more complicated but can 
expressed as a certain linear combination of double coset 
operators whose coefficients we are able to make explicit.

© 2019 Published by Elsevier Inc.

1. Introduction

Modular curves, which are coarse moduli spaces for elliptic curves with prescribed 
level structure, appear in the study of Galois torsion structures on elliptic curves.
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Let � be a prime, and Z/�Z = F� be the finite field of cardinality �.
A well-known example is Mazur’s Theorem [7] which states that there are no rational 

�-isogenies between rational elliptic curves if � > 163. This result is proven by showing 
the modular curve X0(�) has no non-cuspidal rational point if � > 163. Mazur’s method 
is based on descent on the Jacobian of X0(�), but because of the rich arithmetic structure 
of these curves, the method is more powerful and efficient.

For a subgroup H of GL2(F�) which contains −1, it is possible to associate a modular 
curve XH := X/H, where X = X(�) is the modular curve with full level structure �. In 
the case when H is a non-split Cartan subgroup C ′ or its normalizer N ′, it is relevant 
from the point of view of Mazur’s method to understand the Jacobian of XH . In [3], it 
was proven using the trace formula that XN ′ and XC′ are related by an isogeny over Q
to certain quotients of the Jacobian of the modular curve X0(�2). Subsequently, a proof 
based on the representation theory of GL2(F�) was given in [5].

In [4], it was conjectured that the above isogeny relation between the Jacobian of 
XN ′ and the Jacobian of X0(�2) was given by a certain explicit correspondence. This 
was proven in [2] using the representation theory of GL2(F�) and identities in finite 
double coset algebras.

Recently, a new moduli interpretation for XN ′ was given in [10], which explains and 
clarifies the representation-theoretic proof given in [2] in terms of ‘necklaces’.

In this paper, we recall an alternative proof of Merel’s conjecture, which does not 
require extensive representation theory, based on arguments given by B. Birch and D. Za-
gier [1]. The proof can be formulated in terms of finite field analogues of the complex 
plane minus the real line, and is largely elementary in its statement and proof, with the 
exception of one argument relying on algebraic number theory.

Secondly, we generalize these arguments to exhibit an explicit correspondence which 
gives the isogeny relation between the Jacobians associated to split and non-split Cartan 
subgroups. An interesting feature is that the required explicit correspondence is consid-
erably more complicated, but can be expressed as a certain linear combination of double 
coset operators whose coefficients we are able to make explicit.

The precise statements of the theorems we prove are as follows.

• Let � be an odd prime and ε a non-square in F×
� .

• Let G = GL2(F�).
• Let P1(F�) × P1(F�) \ Δ denote the set of ordered pairs (a, b) of distinct points in 

P1(F�).
• Let (P1(F�) ×P1(F�) \Δ)/ ∼, where (a, b) ∼ (b, a), denote the set of unordered pairs 

{a, b} of distinct points in P1(F�).
• Let C� =

{
x + y

√
ε : x ∈ F�, y ∈ F×

�

}
.

• Let H� = C�/ ∼, where x + y
√
ε ∼ x − y

√
ε.

• When S is a set, we denote by Q[S] the free Q-vector space generated by the set S.
• For convenience, we write column vectors in the form (x, y)t for instance.
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Given an unordered pair {a, b} in (P1(F�) ×P1(F�) \Δ)/ ∼, we define in (6) a ‘geodesic’ 
γ{a,b} in H� between a and b.

Theorem 1. The map

ψ+ : Q[(P1(F�) × P1(F�) \ Δ)/ ∼] → Q[H�]

{a, b} �→
∑

x∈γ{a,b}

x

is a surjective Q[G]-module homomorphism.

Given an ordered pair (a, b) in P1(F�) ×P1(F�) \Δ and a parameter s ∈ F×
� , we define 

in (20) a ‘path’ γs
(a,b) in C� from a to b.

Theorem 2. The map

ψ : Q[P1(F�) × P1(F�) \ Δ] → Q[C�]

(a, b) �→
�−1∑
s=1

(αs + βs)
∑

x∈γs
(a,b)

x

is a surjective Q[G]-module homomorphism, where 0 ≤ αs, βs ≤ � − 1 are integers satis-
fying αs ≡ 1 (�) and βs ≡ s−1 (�) for s ∈ {1, . . . , �− 1}.

We explain in section 5 how Theorems 1 and 2 imply relations between the Jacobians 
of XN ′ and XC′ and quotients of the Jacobian of the more standard modular curve 
X0(�2).
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suggestions made which greatly improved the text.

2. Double coset operators

Lemma 3. Let G be a group, H and K be subgroups of G, and g ∈ G. Then

HgK =
⋃

α∈H/H∩gKg−1

αgK,

where the union is disjoint. We call [H : H ∩ gKg−1] the degree of HgK. This is inde-
pendent of the choice of g in the sense that deg(HgK) = deg(Hg′K) if HgK = Hg′K.
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Proof. See [11, Proposition 3.1]. �
Definition 4. Let G be a finite group with subgroups H and K. Given a double coset 
HgK and a decomposition into disjoint cosets

HgK =
⋃
α∈Ω

αgK,

we obtain a Z[G]-module homomorphism σ = σ(HgK) given by

σ : Z[G/H] → Z[G/K] (1)

xH �→
∑
α∈Ω

xαgK.

The Z[G]-module homomorphism σ is called a double coset operator.

Let C (resp. C ′) be the split (resp. non-split) Cartan subgroup of G = GL2(F�) given 
respectively by

C =
{(

η 0
0 β

)
: η, β ∈ F×

�

}
,

C ′ =
{(

x εy
y x

)
: x, y ∈ F�, (x, y) 
= (0, 0)

}
.

Let N (resp. N ′) be the normalizer in G of C (resp. C ′) which is given respectively 
by

N =
{(

η 0
0 β

)
,

(
0 η
β 0

)
: η, β ∈ F×

�

}
,

N ′ =
{(

x εy
y x

)
,

(
x −εy
y −x

)
: x, y ∈ F�, (x, y) 
= (0, 0)

}
.

The finite field F�2 is a vector space over F� of dimension 2. The basis {1,√ε} gives 
us an identification F�2

∼= F� +
√
εF�. Thus, for every z ∈ F�2 , we can write z = x +

√
εy

for some x, y ∈ F�.
The group G = GL2(F�) acts on C�, H�, and P1(F�) by

(
a b
c d

)
(z) = az + b

cz + d
,

(that is, by Möbius transformations), which is analogous to the facts that GL2(R) acts 
on the complex plane minus the real line, and on P1(R); its verification is similar.
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We list the following bijections for later reference:

G/N ↔ (P1(F�) × P1(F�) \ Δ)/ ∼ (2)

G/N ′ ↔ H� (3)

G/C ↔ P1(F�) × P1(F�) \ Δ (4)

G/C ′ ↔ C�. (5)

The above bijections are obtained by noting G = GL2(F�) acts transitively on each 
of the above sets on the right hand side. Picking the elements {0,∞}, {±√

ε}, (0, ∞), 
(
√
ε, −√

ε), we obtain the desired bijections by computing the stabilizers of these ele-
ments.

3. Normalizer of Cartan subgroup case

In this section, we explain and give a detailed proof of Merel’s conjecture for normal-
izers of Cartan subgroups using methods in [1]. In this situation, the conjectural explicit 
intertwining operator is given by a single double coset operator.

Define γ{0,∞} := F×
�

√
ε ⊆ H�, which can be thought of as the geodesic in H� between 

0 and ∞. Given an unordered pair {a, b} ⊆ P1(F�), there is a g ∈ G such that {a, b} =
{g(0), g(∞)}, which is unique up to multiplication on the right by N .

Lemma 5. A choice for the element g above is given by
(
b a
1 1

)
,

where if a = ∞ (resp. b = ∞), then the second (resp. first) column is replaced by (1, 0)t.

Proof. The point at infinity ∞ is denoted by (1, 0)t and the point 0 by (0, 1)t. We 
require a matrix g such that g(0) = (a, 1)t and g(∞) = (b, 1)t, which is given by the 
above matrix. �

Thus, we may define

γ{a,b} := g(γ{0,∞}), (6)

using the action of G = GL2(F�) on H�. The subset γ{a,b} ⊆ H� can be thought of as the 
geodesic in H� between a and b.

Lemma 6. Let a, b ∈ F�. The quadratic equation

(
x− a + b

)2

− εy2 =
(
b− a

)2

, (7)
2 2
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Fig. 1. A visual depiction of the geodesic γ{a,b} in H�.

gives the geodesic γ{a,b} with coordinates (see Fig. 1)

x = a− ελ2b

1 − ελ2 , (8)

y = λ(a− b)
1 − ελ2 , (9)

y/(x− b) = λ. (10)

Proof. The elements in γ{a,b} are given by z = g(λ
√
ε) where g =

(
b a
1 1

)
; writing z as 

a fraction and then rationalizing it, we obtain:

z = bλ
√
ε + a

λ
√
ε + 1

= a− bλ2ε

1 − ελ2 +
√
ε
λ(b− a)
1 − ελ2 .

Therefore, z = x +y
√
ε, where the x, y are given by (8)–(10), which we may verify satisfy 

equation (6) (this equation can be found in analogy with the complex case).
The formulae (8)–(10) also give a parametrization of the conic in (6); thus every 

(x, y) ∈ F�×F×
� (up to equivalence) satisfying (6) corresponds to an element in γ{a,b}. �

Lemma 7. The map ψ+ : Z[(P1(F�) × P1(F�) \ Δ)/ ∼] → Z[H�] defined in Theorem 1
coincides with the double coset operator NN ′ : Z[G/N ] → Z[G/N ′] and is hence a 
Z[G]-module homomorphism.

Proof. Since

N ∩N ′ =
{(

α 0
0 ±α

)
: α ∈ F×

�

}
∪
{(

0 ±εα
α 0

)
: α ∈ F×

�

}
,
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we have from Lemma 3 that

NN ′ = ∪α∈F
×
� /{±1}

(
α 0
0 1

)
N ′.

The Z[G]-module homomorphism from Z[G/N ] → Z[G/N ′] induced by NN ′ from (1) is 
then seen to be the map ψ+ under the bijections (2)–(3). �
3.1. Coordinates for G/N and G/N ′

We need more convenient coordinates to represent elements in (a certain subset of) 
(P1(F�) ×P1(F�) \Δ)/ ∼ and H�, where we recall (P1(F�) ×P1(F�) \Δ)/ ∼ is in bijection 
with G/N , and H� is in bijection with G/N ′.

Lemma 8. Let

S+ =
{
(t,m) : m is a square in F×

�

}
.

Then there is a bijection from the set (F� × F� \ Δ)/ ∼ to the set S+ given by

{a, b} �→ (a + b, (a− b)2).

Proof. The inverse map is given by sending (t, m) ∈ S+ to the set of roots in F� of 
X2 − tX + t2−m

4 . �
Lemma 9. Let

S′
+ =

{
(T,M) : M is a non-square in F×

�

}
.

Then there is a bijection from the set H� to the set S′
+ given by

x +
√
εy �→ (2x, 4εy2).

Proof. The inverse map is given by sending (T, M) ∈ S′
+ to the class in H� of any root 

(in C�) of X2 − TX + T 2−M
4 . �

3.2. Proof of Theorem 1

By Lemma 7, ψ+ is a Q[G]-module homomorphism. To prove Theorem 1, it suffices 
to prove that the restriction

ψ+ |Q[(F�×F�\Δ)/∼]: Q[(F� × F� \ Δ)/ ∼] → Q[H�], (11)

is an isomorphism of Q-vector spaces.
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Using the bijections given by Lemmas 8–9, to prove (11) is equivalent to proving that

ψ+ : Q[S+] → Q[S′
+],

is an isomorphism of Q-vector spaces, where ψ+ is the same map as ψ+ |Q[(F�×F�\Δ)/∼]
under the identifications given by the two bijections (F�×F�\Δ)/ ∼↔ S+ and H� ↔ S′

+.
The strategy of proving ψ+ is an isomorphism will be to show its determinant is 

non-zero. This will be done by showing a matrix of ψ+ has the form (Dm,M ), where 
we can view each entry Dm,M ∈ Z[ζ], where ζ is a primitive �th root of unity. We 
reduce these entries modulo a prime ideal L above � to obtain a matrix (Dm,M ) with 
entries in F�. After reindexing the rows and columns, we obtain a matrix (Di,j) which 
is circulant, and compute its determinant to be non-zero in F�. This implies that the 
determinant of the original matrix of ψ+ is non-zero.

To begin, recall the equation giving the geodesic between a and b is

(
x− a + b

2

)2

− εy2 =
(
b− a

2

)2

,

by Lemma 6. This equation becomes

(T − t)2 = (b− a)2 + 4εy2 = m + M,

in the new coordinates from Lemmas 8 and 9, namely

(t,m) = (a + b, (a− b)2)

(T,M) = (2x, 4εy2).

Here, m and M satisfy (m� ) = 1 and (M� ) = −1, where ( ·
� ) is the Legendre symbol 

modulo �.
Hence, the matrix of ψ+ |Q[S+] with respect to the basis S+ is given by (a(T,M),(t,m))

where

a(T,M),(t,m) =
{

1 if (T − t)2 = m + M,

0 otherwise.
(12)

Thus, the above matrix is an �−1
2 × �−1

2 matrix (Dm,M ), with entries being the � × �

matrices given by

(Dm,M )t,T :=
{

1 if (T − t)2 = m + M,

0 otherwise.
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Remark 10. At this point in the proof, we index the entries of the matrices using the 
variables T, t ∈ F� and m, M ∈ F×

� where 
(
m
�

)
= 1 and 

(
M
�

)
= −1. Strictly speaking, this 

requires specifying an ordering on the indexing elements, which we do in the paragraph 
before (13) for m, M , and for T, t we use the least non-negative residue.

Let D be the matrix obtained from the � ×� identity matrix by permuting its columns 
according to the cycle (1 2 3... �).

Lemma 11. We have that

Dm,M =
∑

u2=m+M

Du.

Proof. As D has order �, Du is well-defined for u ∈ F�.
If m + M is not a square in F�, therefore Dm,M is a zero matrix due to 0 entries, so 

Dm,M =
∑

u2=m+M Du = 0.
If m + M = u2 is a square in F�. Then T − t = ±u and

(Dm,M )t,T =
{

1 if T = t± u,

0 otherwise.

In this case, Dm,M coincides with 
∑

u2=m+M Du. �
Let ζ be a primitive �-th root of unity. The matrix (Dm,M) has entries in Q[D], but 

we can replace the matrix D by an element in the cyclotomic field Q(ζ) in the following 
manner: the minimal polynomial of D over Q is given by m(X) = X�−1 + · · · + X + 1, 
so we have that

Q[D] ∼= Q[X]
(m(X))

∼= Q[ζ] ∼= Q(ζ).

Lemma 12. Let L be a prime ideal of Q(ζ) above �. Then the residue field Z[ζ]/L ∼= F�

and ζ ≡ 1 (L).

Proof. [9, Lemma 10.1]. �
From the above discussion, we see that each block Dm,M may be replaced by the 

element 
∑

u2=m+M 1 ∈ F�, after identifying it with an element of Z[ζ] and reducing 
modulo L, yielding a matrix (Dm,M ) with entries in F�.

We label m, M as m = g2i for 0 ≤ i ≤ r − 1 and M = εg2j for 0 ≤ j ≤ r − 1, where 
r = �−1

2 and g ∈ F×
� is a primitive root. This gives us a new matrix denoted by (Di,j)

whose entries are:

Di,j =
∑

2 2i 2j

1 ∈ F�. (13)

u =g +εg
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Definition 13. A circulant matrix is a matrix with entries in a field F of the form⎛
⎜⎜⎝

a0 a1 a2 ... ar−1
ar−1 a0 a1 ... ar−2

...
...

a1 a2 ... ar−1 a0

⎞
⎟⎟⎠ , (14)

that is, a matrix whose i-th row is obtained from the (i − 1)-th row by cyclically shifting 
the entries one position to the right.

Proposition 14. Let F be a field which contains all rth roots of unity and suppose these 
are distinct. Then determinant of the circulant matrix in (14) is given by

r−1∏
k=0

(a0 + a1ωk + a2ω
2
k + ... + ar−1ω

r−1
k ) =

r−1∏
k=0

⎛
⎝r−1∑

j=0
ajω

j
k

⎞
⎠ , (15)

where ωk = ωk, r ≥ 1, and ω is a primitive rth root of unity in F .

For later reference, we call each factor in the above formula an eigenvalue for k. We 
also let r = �−1

2 for the rest of this section.

Lemma 15. The matrix (Di,j) is an r × r circulant matrix with entries in F�.

Proof. This follows because

Di,j =
∑

u2=g2i+εg2j

1 =
∑

u2=g2(g2(i−1)+εg2(j−1))

1 = Di−1,j−1,

where the indices i, j are taken modulo r. �
Remark that D0,j = aj is equal to the number of solutions of u2 = 1 + εg2j . To show 

that (Di,j) has non-zero determinant, it suffices to show, by the determinant formula for 
a circulant matrix, that we have

a0 + a1ωk + a2ω
2
k + ... + ar−1ω

r−1
k 
= 0 (16)

for every 0 ≤ k ≤ r − 1, where ωk = g2k. This is proven in the next lemma.

Lemma 16.

r−1∑
j=0

aj(g2k)j 
= 0,

for every 0 ≤ k ≤ r − 1.
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Proof. The above sum can be calculated as:

r−1∑
j=0

D0,j(g2k)j =
r−1∑
j=0

aj(g2k)j =
r−1∑
j=0

⎛
⎝ ∑

u2=1+εg2j

1

⎞
⎠ (g2j)k

=
∑

j=0,...,r−1
u∈F�

u2=1+εg2j

(g2j)k = 1
2

∑
u∈F�

y∈F
×
�

u2=1+4εy2

(
u2 − 1

ε

)k

. (17)

Now, we need to show that (17) is non-zero for every 0 ≤ k ≤ r − 1.
We can rewrite u

2−1
ε as 4y2. Here, we are computing Di,j for i = 0, which corresponds 

to m = 1 = (a − b)2 and u = 2x − (a + b). The conic u2 = 1 + 4εy2 then becomes

u2 = 1 + 4εy2 ⇐⇒ (2x− (a + b))2 = 1 + 4εy2

⇐⇒
(
x− a + b

2

)2

− εy2 =
(
b− a

2

)2

,

which is parametrized by x = a−ελ2b
1−ελ2 , y = λ(a−b)

1−ελ2 from (7). Thus, we can rewrite (17) as

∑
λ∈F

×
�

4k

2

(
λ

1 − ελ2

)2k

=
∑
λ∈F

×
�

4k

2 · (λ−1 − ελ)−2k =
∑
λ∈F

×
�

4k′

2 · (λ−1 − ελ)2k
′
,

where −2k′ ≡ 2k (� − 1) and 0 ≤ 2k′ ≤ � − 2, hence 0 ≤ k′ ≤ �−3
2 .

The sum of all terms except the constant terms will be zero. Therefore, we just have 
to compute the sum of the constant terms which is

∑
λ∈F

×
�

(2k′)!
k′!k′! (−1)k

′
εk

′
= (2k′)!

k′!k′! (−1)k
′+1εk

′
. (18)

This is non-zero since 2k′ < � for all values of k′, hence (18) is non-zero in F�. �
This concludes the proof of Theorem 1.

4. Cartan subgroup case

In this section, we generalize Merel’s conjecture to Cartan subgroups and give a proof 
by generalizing the methods in Section 3. A new feature is that the conjectural explicit 
intertwining operator is now a linear combination of double coset operators (rather than 
a single double coset operator) whose coefficients we are able to make explicit.

Define γ(0,∞) := F×
�

√
ε ⊆ C�, which can be thought of as a path in C� from 0 to ∞. 

Given an ordered pair (a, b), there is a g ∈ G by Lemma 5 such that (a, b) = (g(0), g(∞)), 
which is unique up to multiplication on the right by C. Thus, we may define
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Fig. 2. A visual depiction of the path γs
(a,b) in C�.

γ(a,b) := g(γ(0,∞)), (19)

using the action of G = GL2(F�) on C�. The subset γ(a,b) ⊆ C� can be thought of as a 
path in C� from a to b.

Definition 17. For s ∈ F×
� , define γs

(0,∞) to be 
{
(λs + λ

√
ε, 1)t : λ ∈ F×

�

}
⊆ C�. This is a 

path in C� which is a line with slope s−1.

By Lemma 5, the path in C� from a to b with parameter s is defined as

γs
(a,b) := g(γs

(0,∞)) =
{
g(λs + λ

√
ε) : λ ∈ F×

�

}
, (20)

where g =
(
b a
1 1

)
, which is represented by an equation defined in the next lemma.

Lemma 18. The quadratic equation
(
x− a + b

2

)2

− ε

(
y − s(b− a)

2ε

)2

= (ε− s2)(a− b)2

4ε , (21)

gives the path γs
(a,b) with coordinates (see Fig. 2)

x = (bλs + a)(λs + 1) − bλ2ε

(λs + 1)2 − λ2ε
, (22)

y = λ(b− a)
(λs + 1)2 − λ2ε

, (23)

y/(x− b) = μ = −λ/(1 + sλ). (24)
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Proof. The elements in γs
(a,b) are given by z = g(λs + λ

√
ε), where g =

(
b a
1 1

)
and 

λ ∈ F×
� ; writing z as a fraction and then rationalizing it, we obtain:

(bλs + a) + bλ
√
ε

(λs + 1) + λ
√
ε

= (bλs + a)(λs + 1) − bλ2ε

(λs + 1)2 − λ2ε
+
√
ε

λ(b− a)
(λs + 1)2 − λ2ε

.

Therefore, z = x + y
√
ε, where the x, y are given by (22)–(24), which we may verify 

satisfy equation (21) (this was found by solving for an undetermined conic with the 
given parametrization).

The formulae (22)–(24) also give a parametrization of the conic in (21) (in particular, 
μ gives a parametrization, which is a Möbius transformation of λ); thus every (x, y) ∈
F� × F×

� satisfying (21) corresponds to an element in γs
(a,b). �

For each s ∈ F×
� , we define the linear operator Hs by:

Hs : Q[P1(F�) × P1(F�) \ Δ] −→ Q[C�] (25)

(a, b) �−→
∑

x∈γs
(a,b)

x.

Lemma 19. The map Hs : Z[P1(F�) × P1(F�) \Δ] → Z[C�] defined in (25) coincides with 

the double coset operator C
(

1 s
0 1

)
C ′ : Z[G/C] → Z[G/C ′] and is hence a Z[G]-module 

homomorphism.

Proof. For g =
(

1 s
0 1

)
, we have that

C ∩ gC ′g−1 =
{(

α 0
0 α

)
: α ∈ F×

�

}
.

Thus, from Lemma 3, we have that

C

(
1 s
0 1

)
C ′ = ∪α∈F

×
�

(
α αs
0 1

)
C ′.

The Z[G]-module homomorphism from Z[G/C] → Z[G/C ′] induced by CgC ′ from (1) is 
then seen to be the map Hs under the bijections (4)–(5). �
4.1. Coordinates for G/C and G/C ′

We need more convenient coordinates to represent elements in (a certain subset of) 
P1(F�) ×P1(F�) \Δ and C�, where we recall P1(F�) ×P1(F�) \Δ is in bijection with G/C, 
and C� is in bijection with G/C ′.
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Lemma 20. Let F� × F� \ Δ and S =
{
(t, t′) : t ∈ F�, t

′ ∈ F×
�

}
. Then there is a bijection 

between the sets F� × F� \ Δ and S given by:

(a, b) �→ (a + b, a− b).

Proof. The inverse map is given by a = t+t′

2 and b = t−t′

2 . �
Lemma 21. Let C� and S′ =

{
(T, T ′) : T ∈ F�, T

′ ∈ F×
�

}
. Then there is a bijection be-

tween the sets C� and S′ given by:

x +
√
εy �→ (2x, y).

Proof. The inverse map is given by z = T
2 +

√
εT ′. �

4.2. Proof of Theorem 2

By Lemma 19, ψ is a Q[G]-module homomorphism. To prove Theorem 2, it suffices 
to prove that the restriction

ψ |Q[F�×F�\Δ]: Q[F� × F� \ Δ] → Q[C�], (26)

is an isomorphism of Q-vector spaces.
Using the bijections given by Lemma 20 and Lemma 21, to prove (26) is equivalent 

to proving that

ψ : Q[S] → Q[S′],

is an isomorphism of Q-vector spaces, where ψ is the same map as ψ | Q[F� × F� \ Δ]
under identifications given by the two bijections F� × F� \ Δ ↔ S and C� ↔ S′.

Recall the equation giving the path γs
(a,b) from a to b with parameter s is

(
x− a + b

2

)2

− ε

(
y − s(b− a)

2ε

)2

= (ε− s2)(a− b)2

4ε ,

by Lemma 18. By the bijections F� × F� \ Δ ↔ S and C� ↔ S′, this equation becomes

(T − t)2 = t′
2 + 4εT ′2 + 4sT ′t′, (27)

in the new coordinates from Lemma 20 and Lemma 21. Hence, the matrix of Hs restricted 
to Q[S] with respect to the basis S is given by (a(t,t′),(T,T ′)(s)), where

a(t,t′),(T,T ′)(s) =
{

1 if (T − t)2 = t′ 2 + 4εT ′ 2 + 4sT ′t′,

0 otherwise.
(28)
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The above matrix is an (� − 1) × (� − 1) matrix (Xt′,T ′(s)), with entries being the � × �

matrices ((Xt′,T ′(s))t,T ), where

(Xt′,T ′(s))t,T =
{

1 if (T − t)2 = t′ 2 + 4εT ′ 2 + 4sT ′t′,

0 otherwise.

Remark 22. At this point in the proof, we index the entries of the matrices using the 
variables T, t ∈ F� and T ′, t′ ∈ F×

� . The ordering for T ′, t′ is specified in the paragraph 
before Lemma 24, and for T, t, we use the least non-negative residue.

Recall D is the matrix which permutes columns of the � × � identity matrix according 
to the cycle (1 2 3 · · · �).

Lemma 23. We have that

Xt′,T ′(s) =
∑

v2=t′ 2+4εT ′ 2+4sT ′t′

Dv.

Proof. If t′ 2 + 4εT ′ 2 + 4sT ′t′ is not square in F�, then Xt,T (s) is a zero matrix due to 0
entries. Therefore, Xt′,T ′(s) =

∑
v2=t′ 2+4εT ′ 2+4sT ′t′ D

v = 0.
If t′ 2 + 4εT ′ 2 + 4sT ′t′ = v2 is a square in F�, then T − t = ±v and

(Xt′,T ′)t,T (s) =
{

1 if T = t± v,

0 otherwise.

In this case, Xt′,T ′(s) coincides with 
∑

v2=t′ 2+4εT ′ 2+4sT ′t′ D
v. �

Arguing similarly as in the discussion preceding Lemma 12, we obtain that each block 
Xt′,T ′(s) may be replaced by the element 

∑
v2=t′ 2+4εT ′ 2+4sT ′t′ 1 ∈ F�, after identifying 

it with an element of Z[ζ] and reducing modulo L, yielding a matrix (Xt′,T ′(s)) with 
entries in F�.

We label t′, T ′ as t′ = gi and T ′ = gj for 0 ≤ i, j ≤ � − 2, where g ∈ F×
� is a primitive 

root. This gives us a new matrix denoted by (Xi,j(s)) which is given by

Xi,j(s) =
∑

v2=g2i+4εg2j+4sgi+j

1.

Lemma 24. The matrix Xi,j(s) is a (� − 1) × (� − 1) circulant matrix.

Proof. This follows since

Xi,j(s) =
∑

v2=g2i+4εg2j+4sgi+j

1 =
∑

v2=g2(g2(i−1)+4εg2(j−1)+4sgi+j−2)

1 = Xi−1,j−1(s),

where the indices i, j are taken modulo � − 1. �
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Let aj(s) = X0,j(s) and ω = g ∈ F×
� . Remark, X0,j(s) = aj(s) is equal to the number 

of solutions of v2 = 1 + 4εg2j + 4sgj .
The eigenvalue of Xi,j(s) for 0 ≤ k ≤ � − 2 can be calculated as (see Proposition 14):

�−2∑
j=0

aj(s)ωkj =
�−2∑
j=0

aj(s)(gk)j =
�−2∑
j=0

⎛
⎝ ∑

v2=1+4εg2j+4sgj

1

⎞
⎠ (gk)j

=
�−2∑
j=0

∑
v2=1+4εg2j+4sgj

gkj =
∑
λ∈F

×
�

y(λ)k =
∑
λ∈F

×
�

λk(a− b)k

((λs + 1)2 − λ2ε)k
. (29)

Here, aj(s) = X0,j(s), which corresponds to t′ = a − b = 1. In the second last equality 
above, we use y = T ′ = gj and the parametrization in Lemma 18.

We now consider a linear combination 
∑�−1

s=1 δsHs : Q[P1(F�) × P1(F�) \ Δ] → Q[C�]
of the maps Hs where δs ∈ Z. Note that a linear combination of circulant matrices is 
circulant. Hence, the eigenvalue for k of 

∑
s∈F

×
�
δsXi,j(s) is thus given by 

∑�−2
j=0 bjω

kj , 
where bj =

∑�−1
s=1 δsaj(s). Then, we have that

�−2∑
j=0

bjω
kj =

�−2∑
j=0

⎛
⎝∑

s∈F
×
�

δsaj(s)

⎞
⎠ωkj =

∑
s∈F

×
�

δs

�−2∑
j=0

aj(s)ωkj

=
∑
s∈F

×
�

δs
∑
λ∈F

×
�

y(λ, s)k =
∑
λ∈F

×
�

∑
s∈F

×
�

δsy(λ, s)k

=
∑
s∈F

×
�

δs
∑
λ∈F

×
�

(
λ

(λs + 1)2 − ελ2

)k

.

Lemma 25. Let η ∈ {0, 1}. We have that

∑
s∈F

×
�

s−η
∑
λ∈F

×
�

(
λ

(λs + 1)2 − ελ2

)k
{

= 0 if k − η is even,
= 0 if k − η is odd.

(30)

Proof. Choose k′ ∈ Z such that k ≡ −k′ (� − 1) and 0 ≤ k′ ≤ � − 2. Note k and k′ have 
the same parity. Then

∑
s∈F

×
�

s−η
∑
λ∈F

×
�

(
(λs + 1)2 − ελ2

λ

)−k

=
∑
s∈F

×
�

s−η
∑
λ∈F

×
�

(
(λs + 1)2 − ελ2

λ

)k′

,

where
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(
(λs + 1)2 − ελ2

λ

)k′

=
(
λ2s2 + 2λs + 1 − ελ2

λ

)k′

= (λs2 + 2s + λ−1 − ελ)k
′

= (λ(s2 − ε) + 2s + λ−1)k
′
.

Here, we just need the constant terms of 
(

(λs+1)2−ελ2

λ

)k′

as the other terms are powers 
of λ not divisible by � − 1, and the sum of these powers is zero in F�. Now, the constant 
term of

(λ(s2 − ε) + 2s + λ−1)k
′

is equal to
⌊
k′
2

⌋∑
i=0

k′!
i!i!(k′ − 2i)! (2s)

k′−2i(s2 − ε).

Thus, we obtain that

∑
s∈F

×
�

s−η
∑
λ∈F

×
�

(
(λs + 1)2 − ελ2

λ

)−k

=
∑
s∈F

×
�

s−η

⌊
k′
2

⌋∑
i=0

k′!
i!i!(k′ − 2i)! (2s)

k′−2i(s2 − ε)i.

If k − η is even, we have that

∑
s∈F

×
�

s−η

⌊
k′
2

⌋∑
i=0

k′!
i!i!(k′ − 2i)! (2s)

k′−2i(s2 − ε)i (31)

=
∑
s∈F

×
�

s−η

k′
2∑

i=0

k′!
i!i!(k′ − 2i)! (2s)

k′−2i(s2 − ε)i

=

⌊
k′
2

⌋∑
i=0

∑
s∈F

×
�

k′!
i!i!(k′ − 2i)! (2s)

k′−2i(s2 − ε)is−η

= ε
k′
2

k′!
k′

2 !k′

2 !

= 0.

The last equality holds because the only power of s whose exponent is divisible by 
� − 1 happens when i = �k′/2�.
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On the other hand, if k−η is odd, then (31) is zero in F� because there are no powers 
of s whose exponent is divisible by � − 1. This proves the lemma. �
Corollary 26. Let αs, βs ∈ Z be as in Theorem 2. Then the matrix 

∑�−1
s=1(αs +βs)Xi,j(s)

has non-zero eigenvalue in F� for all 0 ≤ k ≤ � − 2 in its circulant determinant formula.

Proof. By Lemma 25, the eigenvalue of 
∑�−1

s=1(αs + βs)Xi,j(s) is non-zero in F�, since 
the eigenvalue of 

∑�−1
s=1(αs + βs)Xi,j(s) for k is the sum of the eigenvalues for k of ∑�−1

s=1 αsXi,j(s) and 
∑�−1

s=1 βsXi,j(s). �
The above corollary implies that determinant of 

∑�−1
s=1(αs + βs)Hs is non-zero. This 

concludes the proof of Theorem 2.

5. Relations between Jacobians of certain modular curves

In this section, we summarize some applications of the main results of this paper to 
Jacobians of modular curves.

Let X = X(�) denote the modular curve of full level � structure which has the structure 
of a projective algebraic curve over Q for � ≥ 3 (cf. [8, p. 241] or [6, Theorem 3.7.1]).

The group G = GL2(F�) acts on X and the quotients XH := X/H by subgroups H
of G (which contain −1) exist as projective algebraic curves over Q [8, p. 244] and [6, 
Proposition 8.1.6].

Let J denote the Jacobian of X and JH denote the Jacobian of XH .

Proposition 27. Let σ : Z[G/H ′] −→ Z[G/H] be a Z[G]-module homomorphism. Then σ
induces a homomorphism of Jacobians σ∗ : JH −→ JH′ .

Proof. This is proved in [2, Lemma 3.3]. �
Proposition 28. Suppose a cochain complex of Z[G]-modules

. . . −→ Z[G/Hi−1] −→ Z[G/Hi] −→ Z[G/Hi+1] −→ . . .

has finite cohomology groups. Then the induced sequence of Jacobians by applying Propo-
sition 27 yields a chain complex

. . . ←− JHi−1 ←− JHi
←− JHi+1 ←− . . .

with finite homology groups.

Proof. This is proved in [2, Proposition 3.7]. �
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Theorems 1 and 2 imply that

Q[G/N ] ψ+

−−→ Q[G/N ′] −→ 0 (32)

Q[G/C] ψ−→ Q[G/C ′] −→ 0 (33)

are exact cochain complexes of Q[G]-modules.

Proposition 29. The following are cochain complexes

Z[G/N ] ψ+

−−→ Z[G/N ′] −→ 0 (34)

Z[G/C] ψ−→ Z[G/C ′] → 0 (35)

with finite cohomology groups.

Proof. This follows from tensoring the cochain complexes above by Q. If the cohomology 
groups were not finite, this would contradict the exactness of the cochain complexes in 
(32)–(33). �

Applying Proposition 28, we obtain:

Corollary 30. The following are chain complexes

0 −→ JN ′
ψ+∗

−−−→ JN (36)

0 −→ JC′
ψ∗

−−→ JC (37)

with finite homology groups.

From [3], we have that

JN ∼ JN ′ × JB (38)

JC ∼ JC′ × J2
B , (39)

where ∼ denotes the relation of isogeny over Q, and B is the subgroup of upper triangular 
matrices in G. Hence, Corollary 30 describes the main part of the well-known relations 
between JN and JN ′ (resp. JC and JC′) using explicit correspondences.

It is known that XC
∼= X0(�2) and XN

∼= X0(�2)/ 〈w�〉, which are the more standard 
modular curves studied in the literature.
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