期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:168
The level 13 analogue of the Rogers-Ramanujan continued fraction and its modularity
Article
Lee, Yoonjin1  Park, Yoon Kyung2 
[1] Ewha Womans Univ, Dept Math, Seoul 03760, South Korea
[2] Ewha Womans Univ, Inst Math Sci, Seoul 03760, South Korea
关键词: Rogers-Ramanujan continued fraction;    Modular function;    Modular unit;   
DOI  :  10.1016/j.jnt.2016.04.009
来源: Elsevier
PDF
【 摘 要 】

We prove the modularity of the level 13 analogue r(13)(tau) of the Rogers-Ramanujan continued fraction. We establish some properties of r13(tau) using the modular function theory. We first prove that r13(tau) is a generator of the function field on Gamma(0)(13). We then find modular equations of r(13)(tau) of level n for every positive integer n by using affine models of modular curves; this is an extension of Cooper and Ye's results with levels n = 2,3 and 7 to every level n. We further show that the value r(13)(tau) is an algebraic unit for any tau is an element of K - Q, where K is an imaginary quadratic field. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2016_04_009.pdf 397KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次