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THE LEVEL 13 ANALOGUE OF THE ROGERS-RAMANUJAN
CONTINUED FRACTION AND ITS MODULARITY

YOONJIN LEE' AND YOON KYUNG PARK?*

ABSTRACT. We prove the modularity of the level 13 analogue r13(7) of the Rogers-
Ramanujan continued fraction. We establish some properties of r13(7) using the modular
function theory. We first prove that r13(7) is a generator of the function field on I'(13).
We then find modular equations of r13(7) of level n for every positive integer n by using
affine models of modular curves; this is an extension of Cooper and Ye’s results with levels
n = 2,3 and 7 to every level n. We further show that the value ri13(7) is an algebraic unit
for any 7 € K — Q, where K is an imaginary quadratic field.

1. INTRODUCTION

Let $ be the complex upper half plane and ¢ := ¢?™" for 7 € $. The Rogers-Ramanujan
continued fraction r(7) is defined by

1/5
r(r) = :
1 -+ #
q
Bhay 3
q
1
+ 14+.-.
It can be also written as an infinite product as follows:
) o0
(L1) r(r) = g5 [Ja-q"))
n=1

with the Jacobi symbol (%) On the other hand, it has the following interesting properties:

1 1 17q5
(1.2) N :q5II —

r(7) Lo (1=¢)
and

1 = (1—q")
1.3 — 11—
(13) s o=l =

The identity in (1.1) was proved in [9], and (1.2) and (1.3) were stated by Ramanujan [1,
p. 85 and p. 267] and proved by Watson [11].
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Recently, Gee and Honesbeek studied the modularity of r(7) and evaluated r(7) for an
imaginary quadratic quantity 7 [6]. Cais and Conrad investigated the modular equation of
r(7) and its properties in the view of arithmetic models of modular curves [3].

For any positive integer N > 2 with (’Wl) = 1, we define the level N analogue of the
Rogers-Ramanujan continued fraction to be

o0
ra(r) = [T =),
n=1
where 5
2
B r(r—=N) /r
o= ; v (%)
and [-] denotes the floor function value. For example, a5 = 1/5, ajgp = 3/5 and a3 = 1.
We notice that r5(7) is exactly the same as the Rogers-Ramanujan continued fraction (7).

In Ramanujan’s second notebook [1, Entry 8 (i)] he stated r13(7) satisfies the following
identity:

1 oy (g2
(1.4) B e =g 1gm~

We prove the modularity of r13(7) (Theorem 1.1). We establish some properties of r13(7)
using the modular function theory. We first prove that r13(7) is a generator of the function
field on I'p(13). We then find modular equations of r13(7) of level n for every positive
integer n by using affine models of modular curves (Theorem 1.2); this is an extension of
Cooper and Ye’s results with levels n = 2,3 and 7 to every level n. We further show that
the value 713(7) is an algebraic unit for any 7 € K — Q, where K is an imaginary quadratic
field (Theorem 1.3).

The examples of the modular equations are given in Appendix, which includes Cooper and
Ye’s result [5]. Assuming that the value r13(7) is given, Cooper and Ye expressed r13(2"7)
and r13(3"7) in terms of radicals for n € Z; they used the modular equations of 713(7)
obtained from the identities in [2]. By Theorem 1.2 or modular equations in Appendix B,
we obtain the values r13(r7) for any positive rational number r.

It was proved that 713(v/—n/2) is a unit in [5, Theorem 6.2] for any positive integer n.
Using a completely different approach, we prove that r13(7) is a modular unit, and therefore
r13(2) is a unit for every z € K — Q.

We state our main results as follows.

Theorem 1.1. The level 138 analogue of the Rogers-Ramanujan continued fraction ri3(T)
is a modular function on T'1(13). Moreover, the field of modular functions on To(13) is
generated by 1/r13(1) — r13(7T).

Theorem 1.2. For any positive integer n, there is a modular equation F,(X,Y) of r13(7)
of level n.

Theorem 1.3. Let K be an imaginary quadratic field. Then r3(7) is a unit for every
TeK—-Q.
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This paper is organized as follows. Section 2 provides brief preliminaries about modular
functions and Klein forms and states lemmas regarding the cusps of congruence subgroup
To(N). Furthermore, we describe a method to get an affine model which is used for the
proof of our main theorems. In Section 3, we focus on the functions with modularity of
level 13. These are stated in Ramanujan’s second notebooks [1]. In Section 4, we prove
Theorem 1.1 and 1.2, where we show the modularity of r13(7) and give the properties of
modular equations of 1/r13(7) — 3 — r13(7). Then, we prove that r3(7) and 1/r13(7) are
algebraic for any imaginary quadratic quantity 7; hence, r13(7) is a unit. Furthermore, we
obtain the modular equation of r13(7) in Appendix B for levels 2,3,5,7,11,13 and 17 using
MAPLE program.

2. PRELIMINARIES

We introduce some definitions and properties from the theory of modular functions.
Let 5 = {7 € C:Im(7) > 0} be the complex upper half plane, H* := H U QU {cc}, and
I'(1) := SLg(Z) the full modular group. For any positive integer N, we have congruent
subgroups I'(N),T'1(N) and T'o(N) of I'(1) consisting of matrices (2%) congruent modulo
N to (39), (§1) and (§ %), respectively.

A congruence subgroup I' acts on $* by linear fractional transformations as (1) =
(a4 b)/(cT +d) for v = (24) € I, and the quotient space I'\§H* becomes a compact
Riemann surface with an appropriate complex structure. We identify ~ with its action on
$H*. An element s of QU {oo} is called a cusp, and two cusps s1, s2 are equivalent under T
if there exists v € T such that y(s1) = s2. The equivalence class of such s is also called a
cusp. In fact, there exist at most finitely many inequivalent cusps of I'. Let s be any cusp
of I, and let p be an element of I'(1) such that p(s) = co. We define the width of the cusp s
in I'\$* by the smallest positive integer h satisfying p=* (%) p € {1} -I'. Then the width
of the cusp s depends only on the equivalence class of s under I', and it is independent of
the choice of p.

By a modular function on a congruence subgroup I' we mean a C-valued function f(7)
of § satisfying the following three conditions:

(1) f(r) is meromorphic on $.
(2) f(7) is invariant under T', i.e., foy = f for all v € T.
(3) f(r) is meromorphic at all cusps of I'".

The precise meaning of the last condition is as follows. For a cusp s for I'; let h be the

width for s and p be an element of SLy(Z) such that p(s) = co. Since

tortean = (o (5 1)) 07 in = (ror ).

fop~! has a Laurent series expansion in ¢, = e2mi/h namely for some integer ng, (f o
pH(r) = Y nsng @ndp With an, # 0. This integer ng is called the order of f(7) at the cusp
s and denoted by ord, f(7). If ord, f(7) is positive (respectively, negative), then we say that
f(7) has a zero (respectively, a pole) at s. If a modular function f(7) is holomorphic on
$ and ordsf(7) is non-negative for all cusps s, then we say that f(7) is holomorphic on
H*. Since we may identify a modular function on I' with a meromorphic function on the
compact Riemann surface I'\$*, any holomorphic modular function on IT" is a constant.

Let Ag(I") be the field of all modular functions on I', and let Ag(I')g be the subfield of
Ap(T) which consists of all modular functions f(7) whose Fourier coefficients belong to Q.
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We may identify Ao(I") with the field C(I'\$*) of all meromorphic functions on the compact
Riemann surface I'\$*, and if f(7) € Ap(I") is non-constant, then the field extension degree
[Ao(T) : C(f(7))] is finite and is equal to the total degree of poles of f(7). Since we will
consider the modular functions with neither zeros nor poles on §, the total degree of poles

of f(1)is — )  ordsf(7), where the summation runs over all the inequivalent cusps s at
which f(7) has poles.

To recall the Klein form, which is a main tool of this paper, consider the Weierstrass
o-function by
o(z; L) =z (1 - i) 65+%(%)2,
weLl_—[{O} v
where L is any lattice in C and z € C. This is holomorphic with only simple zeros at all
points z € L. The Weierstrass -function is also defined by

@28 L 5 (k)

weL—{0}

by the logarithmic derivative of o(z; L). This is meromorphic with only simple poles at all
points z € L. We can see that o(Az; A\L) = Ao (z; L) and ((Az; AL) = A\~1((z; L) for any
A€ C*. In fact ('(2; L) is —p(z; L) with Weierstrass p-function defined by

1 1 1
o=+ X (o)
weL—{0}

For any w € L, p(z + w; L) = p(z; L) and d%[g(z +w; L) — ((z;L)] = 0. In other words,
((z4w; L) —((z; L) depends only on a lattice point w € L and not on z € C, so we may let
n(w; L) be ((z+w; L)—((z; L) for all w € L. When we fix the basis wy, wa for L = Zw; +Zws,
for z = ajw1 + asws € L with a1, as € R, define the Weierstrass n-function by

n(z; L) := ain(wi; L) + azn(ws; L).
Note that n(z; L) does not depend on the choice of the basis {wi,ws}, and it is well-
defined. Moreover, n(z; L) is R-linear so that n(rz; L) = rn(z; L) for any r € R.
We define the Klein form by
K(z L) =e "0 (2 1).
For a = (ay,a3) € R? and 7 € §), we further define
Ka(1) = K(a1T + ag; Z1 + Z)

as the Klein form by abuse of terminology. We observe that K,(7) is holomorphic and
nonvanishing on § if a € R? —Z? and homogeneous of degree 1, i.e., K(Az; AL) = AK(z; L).

The Klein form satisfies the following properties. Let v = (‘; 2) € SLy(Z) and a =
(al, ag) S R2.

(K0) K_a(1) = —Ka(7).
(K1) Ka(yr) = (et + d)_lKa,y(T).
(K2) For b = (b1, by) € Z?, we have that

Kaer(T) = E(av b)Ka(T)v

where e(a, b) = (—1)tb2tbitba pri(brar=braz)
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(K3) Fora = (r/N,s/N) € (1/N)Z?-Z? and v € I'(N) with an integer N > 1, we obtain
that
Ka(y7) = ea(y)(eT + d) ' Ka(7),
where Ea('Y) _ 7(71)((a—l)r+cs+N)(br+(d—1)s+N)/N2ewi(br2+(d—a)rs—cs2)/N2.
(K4) Let 7 € $, z = a17 + az with a = (a1,a2) € Q? — Z? and further let ¢ = ¢*™" and
q. = 627riz _ e?m’az eZm'alr. Then

1 aj(ag—1) o (1—q¢"q¢.)(1 — ¢ ¢!
Kalr) = =g e 0 -0 [T N
and ord,Ka(7) = (a1)((a1) — 1)/2, where (a1) denotes the rational number such
that 0 < (a1) < 1 and a; — (a1) € Z.
(K5) Let f(r) =[], Kf(a)(T) be a finite product of Klein forms with m(a) € Z and
a = (r/N,s/N) = (1/N)Z? — Z? for an integer N > 1, and let k = —>__m(a).
Then f(7) is a modular form of weight & on I'(/V) if and only if

{ Yam(a)r? =3, m(a)s? =Y, ,m(a)rs=0 (mod N) if N is odd,
Yam(a)r?=>,m(a)s? =0 (mod 2N), > m(a)rs=0 (mod N) if N is even.

For more details on Klein forms, we refer to [8].

The following lemma is some information on cusps of the congruence subgroup I'o(N).

Lemma 2.1. Let a,c,d’,c € Z be such that (a,¢) =1 and (a/,¢') = 1. We understand that
+1/0 = co. We denote by Spy(ny a set of all the inequivalent cusps of T'o(N). Then a/c
and a' /" are equivalent under To(N) if and only if there exist's € (Z/NZ)* and n € Z such

! =1
that < CCL, ) = ( 5 L;j ne ) (mod N). Furthermore, we can take Sto(n) as the following
set
SFQ(N) — {a/zj e@l0<C|N,0<a57j§N,(ac7j’N):1’

N
ey = Qejr ¢ Aej = aeyr (mod | ¢, " )

and the width of the cusp a/c in To(N)\$H* is N/(N,c?).
Proof. See [4, Corollary 4 (1)]. O

Suppose that two modular functions f1(7) and fo(7) satisfy the relation F(f1(7), fa(7)) =
0, where F'(X,Y) is a two variable polynomial with complex coefficients. Ishida and Ishii
proved the following lemma, and this lemma shows which coefficients of F(X,Y") are zeros
[7].
Lemma 2.2. For any congruence subgroup I, let f1(7), fo(T) be nonconstants such that

C(f1(7), fa(7)) = Ao(I") with the total degree Dy, of poles of fr(T) for k =1,2. Let
F(X,Y)= Y Ci;X'Y7 €C[X,Y]

0<i<Dy
0<j<D1
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be such that F(f1(7), f2(7)) = 0. Let Spr be a set of all the inequivalent cusps of T, and
fork=1,2,
Sko =1{s € St : fi(T) has zeros at s}
and
Sk,co = {5 € S : fi(T) has poles at s} .
Further let
a=— Z ords f1(7) and b= Z ords f1 (7).
SES1,00MNS2,0 s€51,0MS2,0
We assume that a (respectively, b) is zero if S100 N S2 (respectively, S19N Sa0) is empty.
Then we obtain the following assertions:
(1) Cpya # 0. If further S1 o0 C S2,00 U Say, then Cp, ; =0 for any j # a.
(2) Cop #0. If further S1p C S2,00 U S, then Cyj =0 for any j # b.

(3) Cip, =0 for any i satisfying that 0 < i < [S1,0MNS2.00| 07 Do — [S1,00 N S2,00| <7 <
Ds.
(4) Ci0 =0 for any i satisfying that 0 < i < [S10N S| 0r Do —[S1,06NS20| < i < Ds.
(5) Suppose further that there exist r € R and N,ny,no € Z with N > 0 such that
fe(t + 1) = F fu(r) for k = 1,2, where (n = e2™i/N - Then for i,j satisfying
nii + ngj # n1 Doy + noa (mod N), we have C;j = 0.
If we interchange the roles of fi and fa, then we obtain further properties similar to (1)
through (4).

3. MODULAR FUNCTIONS OF LEVEL 13

Ramanujan studied r3(7) with the following six complex valued functions pq(7), - - , ug(7)
on $:
,ul(T) _ q_% 10_0[ (1 o q13n79)(1 o q13n74)
‘ 11 (1 — ¢Bn—T0)(] — gl3n-2)
qu(T) - q_% 10_0[ (1 o q13n—7)(1 o q13n—6)
y 11 (1 — ql3n—10)(1 — gl3n-3)’
MS(T) _ q_% ﬁ (1 q13n 11)(1 _ q13n—2)
11 (1 — gl3n—12)(1 — gl3n-1)
’u4(7) _ q*% ﬁ (1 q13n—8)(1 _ q13n—5>
11 (1 — gi3n=9)(1 — gl3n—4y’
o0 13n—10 13n—3
5 1—gq l1—gq
woir) = aB ] I )

_ ,13n—1

1510—01(1—61 )(1— g )

(1= ¢Bn=T)(1 — ¢13n—6)

n=1

Lemma 3.1. [1, Entry 8 (i)]
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(1)
_z 1 (L—4%)
(1) = p2(7) — ps(7) + pa(7) — ps(7) + pe(7) = =1+ ¢ 13 H m7
n=1
(2)
p () pa(7) = pa(T)ps () — pa(T)pe(r) = 1+ ¢ H 13n —
3)
1 1 1 _ ! ﬁ (1—q")
pr(mpa(r)  pa(T)us(1)  pa(m)pe(T) (1 =g
(4)
2 (T)ps(T)pa(T) — pa (7) ps (7) s —3+q_1H 13n Nt
()
pa () 2 (7) 3 () pa () s (1) ps (1) = 1.

Proof. See [1, p.372-375]. O
Remark 3.2. (1) By comparing the infinite products, we get
(3.1) r13(7) = pa (7) s (7) s (7).

(2) The property in (4) of Lemma 3.1 is exactly the same as (1.4).

For simplicity, throughout this paper we denote f(7 )
i (T=¢Y)
) 1
o H 13n

Proposition 3.3. Let (xy = e2™/N. We can write the functions i (j=1,---,6) by the

following finite product of Klein forms:

(1) pa(r) = (T3 T2 0 Kajis,s13) (1K, 2/135/13)(7),
(2) pa(r) = 413 | K6/13,5/13)(T) K 3/13 5/13)(T);
(3) ps(r) = Hs OK(2/13 s/lS)(T) (1/13 5/13) (T)v
(4) pa(r) = C11:9 T1220 K(5/13,5/13) (1) K (4/13 5/13)(T);
(5) us(r) = & T, K3/13,6/13)(T) K 5/13 5/13)(T)s
(6) pe(r) = <123 Hiio K(1/13,s/13)( ) (6/13,5/13)( 7).

Moreover, all p1(7), ..., pue(7) are modular functions on I'(13).

Proof. By (K4), the product of Klein forms has an infinite product. We have

12 ey _ 13n—r _ 13n—(13—r)
(o _\—13,3p =18 (1—g¢ )(1—g¢ )
HK(%E)(T) = (—2mi)"°Ci5q 26 H (1—qn)2
s=0 n=1
and
12 K(r1 . )(T) 0 (1— q13n—r1)(1 - q13n—(13—r1))

(=) (1

3(r1—12) L (r1—ro)(r1+ro—
= C13(; 1) gz (i) (i) H g13n—(13=r2)y’
n=1
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By the property (K5) of Klein forms, Hio Ky, /13,5/13) (T)K(;Ql/13 3/13)(7) is a modular
function on I'(13). Comparing this with the definition of p;, the result follows immediately.
]

By the following lemma we can see the existence of an affine plane model defined over
Q, which is called the modular equation in this paper.

Lemma 3.4. Let n be a positive integer. Then we have

Q(f(7), f(n7)) = Ao(T'o(13n))q-

Proof. By Theorem 1.1, Q(f(7)) = Ao(I'o(13))g. For any a € GL (Q), f(ar) = f(7)
means that o € Q% - T'y(13). For S = (29), we have

To(13) N B T6(13)8 = To(13n).

So it is clear that f(7), f(n7) € Ag(I'o(13) NTo(13n))gq.

Thus it is enough to show that Q(f(7), f(n7)) D Ao(I'o(13n))g. Let IV be the sub-
group of I'(1) satisfying Q(f(7), f(n7)) = Ao(I')g, and let v be an element of I'. Since
Q(f(r)) = Ap(T'0(13))g and f(r) is invariant under 7, we can see that v € I'g(13). Since
f(n7) is also invariant under v, f(By7) = f(B7) and f(7) is invariant under fy5~1. In
other words, By3~1 € T'o(13) and v € B7'T¢(13)8. Hence I C T'o(13) N B~ 'Tx(13)B and
QU (7). F(n7)) = Ap(I)g > Ao(To(13) N To(13n))g. O

Lemma 3.5. f(7) has a simple pole at oo and has a simple zero at 0.

Proof. By Lemma 2.1, the group T'g(13) has two inequivalent cusps co and 0 with width 1
and 13, respectively. Since f(7) = ¢ ' [[02;(1 —¢")*(1 — ¢"¥")"2 = ¢~ + O(1), we can see
that f(7) has a simple pole at oo. To observe the behavior at 0, we note

() () =a"P+0).
By considering the width 13 at 0, ordgf(7) = 1 and we find that f(7) has a simple zero at
0. O

Now we suggest an efficient algorithm for finding modular equation.

Lemma 3.6. Let a,c,a’,c € Q and f(7) = ¢ ' [[02,(1—¢")*(1 —¢'*") 2. Then we obtain
the following assertions:
(1) f(7) has a pole at a/c € QU {oco} with (a,c) =1 if and only if (a,c¢) =1 and ¢ =0
(mod 13).
(2) f(n7) has a pole at a’ /" € QU {oo} if and only if there exist a,c € Z such that
af/c=nd /d, (a,c) =1, and ¢ =0 (mod 13).
(3) f(7) has a zero at a/c € QU {oo} with (a,¢) = 1 if and only if (a,c) = 1 and
(¢,13) = 1.
(4) f(n7) has a zero at o’ /c € QU {oo} if and only if there exist a,c € Q such that
a/c=nd /d, (a,c) =1, and (¢,13) = 1.

Proof. (1) By Lemma 2.1, f(7) has a simple pole at a/c if and only if there exists 5 €

(Z/13Z)* such that ( CCL ) = ( 3 ) (mod 13). This is equivalent to the condition that

a,c € Z such that (a,13) =1 and ¢ =0 (mod 13).
(3) We note that any a/c € QU {oc} is equivalent to either oo or 0. If f(7) has a zero at
a/c € QU{oo}, a/c is not equivalent to oo, (a,c) =1, and (13,¢) = 1. If a, ¢ € Z satistying
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(a,c) = 1 and (13,¢) = 1, then a/c € Q is not equivalent to oo but equivalent to 0; this
shows that f(7) has a zero at such a/c.
(2) and (4) are obtained by (1) and (3), respectively. O

4. PROOFS OF MAIN THEOREMS
Now we prove Theorem 1.1 using Lemma 3.1 and Proposition 3.3 in the previous section.

Proof of Theorem 1.1. Note that I'1(13) =< T'(13),({1) > and I'g(13) =< I'1(13), (4 %) >.
By Proposition 3.3 since all p1(7),. .., ug(7) are modular functions on I'(13) and

1
p2(T)pa (1) pa(r)’

27T

r13(7) = pa(T)ps (T)pe (1) =

r13(7) is also a modular function on I'(13). In fact, g = e is invariant under the action
T =7+ 1, ri3(7 + 1) = r13(7); thus, r13(7) is a modular function on I'1(13).

For the second statement, it is sufficient to prove that

Ao(To(13))g = Q(f(7))

with f(7) = 1/r13(7) — 3 — r13(7).
Let v = (&4 1). Then the action of v on the product of Klein forms are
12
HK%% A1) = (1374 7) IBHK%%)(T),
5120
HK%% 1) = (3(137+7) 1381_[().7(%%)(7'),
12
HK%% vT) = —(13747) 13HK%%)(T),
5
HK%% ) = WP K,
12
HK%% vT) = (3137 +7) 13511)1(%%)(7),
12
HK%% ) = (313 +7) 131_[().7(%%)(7'),

and

p(y7) = i3 pa(r), p2(y7) = Cgre(T),
pus(y7) = Gagm (1), ma(y7) = s (7),
ps(v7) = Gigna(7),  me(y7) = CGgpa(7)-
Hence the actions of v on r13(7) and f(7) are
1

T13(7’)

r13(Y7) = w1 (YT ps (YT e (Y1) = —p2(T)ps(T)pa(T) = —
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and
1

T) = —3—ri3(y7) = —ri3(7) =3+ = f(7).
f(V ) T13(77) 13(’7 ) 13( ) 7,13(7_) ( )
Hence f(1) € Ag(T'0(13)). Moreover, by the fact that the genus of I'g(13) is zero, we have
Ap(T'9(13)) = C(f(7)). Since the Fourier coefficients of f belong to Q, we get Ag(I'9(13))g =

Q(f(r)) = Q(1/r13(7) — 713(7))- O
Let dy (respectively, d,) be the total degree of poles of f(7) (respectively, f(nt)). Let
F,(X,Y) be a polynomial such that
Fu(X,Y)= ) Ci;X'Y7 €Q[X,Y]

0<i<dn
0<j<d;

and Fy,(f(7), f(n1)) = 0. From Lemma 2.2, for any prime p # 13, we can remove 4p + 2
coefficients of modular equations of level p.

Theorem 4.1. Let p be any prime p # 13 and F,(X,Y) be the polynomial satisfying
Fo.(f(r), f(nT)) =0. Then

F(X,Y)= >  Ci;X'V7€QX,Y]
0<i,j<p+1
and
(1) Cp+170 7'5 0 and C(),p_;,_l 75 0.
(2) FO?”j :0,...]9, Co,j =0 cde“,O =0.
(3) Forj=1,...p+1, Cp+1,j =0 and Cj,p_;_l =0.

Proof. Note that Sp,(i3p) = {00,0,1/p,1/13} is the set of inequivalent cusps of I'g(13p).

Let f1(7) = f(7) and fa(7) = f(p7). Since C(f1(7), f2(7)) = Ao(To(13n)), f1(7) and fa(T)
have poles at 0o, 1/13 and zeros at 0,1/p with

ordes f1(7) = 0Td1/13f2(7') =—1, and 0Td1/13f1(7) = orde f2(7) = —p.
Hence, we have F,(X,Y) = ZOSZ‘JSPH C;; XY, Additionally,

ordo f1(7) = ordy /, fa(7) = p and ord, , f1(7) = ordo f2(7) = 1.
From Lemma 2.2, the fact that ¢ =0 and b = p + 1 implies that both Cpt1,4 = Cpi1,0 and
Co,p = Cop1 are nonzero. Moreover, Cpi1,; = 0 for j # 0 and Cpj = 0 for j # p + 1.
On the other hand, let fi(r) = f(pr) and fao(7) = f(7). Assume that Fj(X,Y) =
D 0<ij<pt1 CZ{J—XZ'YJ' is a polynomial satisfying Fy(f(p7), f(7)) = 0. Then CZ{’]- = Cj,,
!/

a=0and b=p+1by Lemma 2.2. By using Lemma 2.2, we get C},,, ; = ip+1 = 0 for
j=1,...,p+1land C; = Cjo=0for j =0,...p. O

We want to point out that the following proof of Theorem 1.2 presents a constructive
way of finding the modular equation of r13(7).

Proof of Theorem 1.2. If C(f1(7), fo(7)) is the field of all modular functions on some
congruence subgroup for which f1(7) and fo(7) are nonconstants, then [C(f1(7), fo(7)) :
C(fi(7))] is the total degree d; of poles of fi(r) for i = 1,2. Therefore, there exists a
polynomial ®(X,Y) € C[X,Y] such that ®(f1(7),Y) is a minimal polynomial of fo(7) over
C(f1(7)) with degree dy, and similarly so is ®(X, fo(7)) with degree dy. Let f1(7) = f(7) =
g I (1—¢™)2(1—¢"¥™) 72 and fo(7) = f(n7). Then by Lemma 2.2, for every positive
integer n, we can consider a polynomial F,,(X,Y") € Q[X,Y] such that F,(f(7), f(n7)) =0
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with degy Fi,(X,Y) = dy and degy F,(X,Y) = d;. We thus get the modular equation
Fo.(X,Y) of f(r) for every positive integer level n. Since f(7) = 1/r13(1) — 3 — r13(7),

~ 1 1

Fo(X,Y):= X2yd |, (Y -3-X, v 3— Y)
is a polynomial with F,(r13(7), 713(n7)) = 0. After factorizing the polynomial F,,(X,Y),
one can choose exactly one irreducible factor F,(X,Y) of F,(X,Y) satisfying F, (r13(7),
r13(n7)) = 0. In fact, this F,(X,Y") is a modular equation of r13(7) of level n for a positive
integer n. ([

We have to calculate the modular equation of level 13 separately since Theorem 4.1 does
not cover the level 13 case. For a modular function f;(7) of level N, let Sj¢ (respectively,
Sjo) be the subset of the set St () of inequivalent cusps of I'g(N) satisfying ords f;(7) > 0
(respectively, ords fj(7) < 0) (as defined in Lemma 2.2). To find the modular equation of
level 13, the subsets S; ¢ and S play important roles. When the modular equation is of
level 13, the cusps of congruence subgroup I'g(169) and the behaviors of f(7) and f(137)
at the cusps are all different from the ones of I'y(13p), f(7) and f(p7) as p # 13.

Theorem 4.2 (A modular equation of level 13). We explicitly obtain the modular
equation Fi3(X,Y) of ris(7) with level 13 as given in Appendiz B.

Proof. Let Sp,(169) be the set of inequivalent cusps.
Let f1(1) = f(1) =q7! L, (1— q¢")%(1 — ¢*®")=2 and fo(7) = f(137) in Lemma 2.2.
Then we may write

SF0(169) = {OO7 07 1/13, 2/13, Y., 12/13} .
Here the useful subsets S and Sjo (j = 1,2) of St (169 are

1 12
Sl,oo = {OO7 —157...,13} ,5170 = {0} and

52700 = {OO},SQ@ = {0,%,...,1—;},
where
Sjc i= {5 € Sry(160) : f5(7) has a pole at s}
and
Sjo = {s € Sry(169) : f;(7) has a zero at s} .
Since orde f1(7) = ordy/13f1(7) = —1 (I = 1,...,12) and ord f2(7) = —13, the modular
equation of level 13 is
Fi3(X,Y) = Z Ci i XYY,
0,<i,j<13
Since
i Z ords fi1(7) = 12 and Z ords fi1(7) = 13,
$E€S51,00MNS2,0 s€51,0NS2,0
we have the following:
(1) 013712 and 00713 are nonzero.
(2) Clg’j =0 for all j = 0, ce 11, 13.
(3) C()’j =0 for allj:O,...,IQ.
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By switching the roles of fi and fa, let fi(7) = f(137) and fa(7) = f(7). Then
1 12
Sl,oo - {OO};SI,O - {O’E,,E}
1 12
S2.00 = y=—=y.-,— ¢, and So o = {0}.
. {OO 13 13} and $20 = {0}
A similar computation as above shows the following:
(1) Co,13 and C o are nonzero.
(2) Cj713 =0 fOI‘j = 172,...,13.
(3) Cj70:0f01'j:0,2,...,13.
Assume that Cp 13 = 1. By substituting the g-expansion of f(7) and f(137), we get the
modular equation Fi3(X,Y") in Appendix A.
For obtaining F13(X,Y), let
Fi3(X,Y) = XBYBFR3(1/X —3-X,1/)Y —3-Y).

This polynomial has two irreducible factors Fi3(X,Y) and Fi5(X,Y’), where the lowest
term of Fi4(X,Y) is 1. Since Fi5(ri3(7),m13(137)) = 1 + O(q), it cannot be zero. It thus
follows that F13(X,Y) is the modular equation of r13(7) with level 13. O

In Appendix A, the modular equations of f(7) satisfy the congruence relation
(XP—-Y)(X —-YP) (mod p)
for p = 2,3,5,7,11 and 17. This property is called Kronecker’s congruence. We discuss
some properties of modular equations including the Kronecker’s congruence.
Consider I" = T'y(13). For any integer a with (a,13) = 1, we choose o, € I'(1) so that
oa=(2,"9) (mod 13) and o, € I'g(13). For example, we may take o, as

1 0 85 13 113 26
Uﬂ:i(O 1>,Ui2=ﬂ:<13 2)>U:|:3::|:<13 3>,

10 13 34 13 28 13
"i4i(13 17)"’*“*(13 5)’Uiﬁi<13 6)'

For every integer n with (n,13) = 1, one has

1 0 a b
(OHETITEA
%Tr?ogkg a

with disjoint union and [I\I' (¢ ) I'| = n]],,(1 + 1/p) by [10, Proposition 3.36].
Consider the polynomial
X =1 TI - ocauwr)
0<aln 0<b<n/a
(a,b,n/a)=1
with degree n ][, ,(1+ 1/p), where aqp = 04 (8 nl;a)
The coefficients of ¥, (X, 7) are elementary symmetric functions of foagy and invariant
under T'. In other words, these are in Ay(I') = C(f(7)) and ¥, (X,7) € C(f(r))[X].

Therefore, we may write ¥, (X, f(7)) instead of ¥,,(X, 7). By observing o, 0 = 0, (2 9), we

have (foan0)(7) = f(n7) and W, (f(n7), f(7)) = 0. When fi(7) = f(n7) and fa(r) = f(7),
we define Sj o to be the set of cusps which are poles of f;(7). By S;o we mean the set
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of cusps where f;(7) has zero. From Lemma 2.2, we recall that a is a nonnegative integer
determined by the order ordsfi(7) of fi(7) at the cusp s in Sj o N S20. If we multiply
U, (X, f(7)) by a suitable power of f(7), we have a polynomial F,(X, f(7)) € C[X, f(7)]
such that F,(f(n7), f(7)) = 0. By Lemma 3.6 since Si o N S20 = ¢, we may take a = 0.
We thus will regard ¥,,(X, f(7)) as a polynomial of X and f(7) for proving the following
theorem.

Theorem 4.3. With the notation as above, for a positive integer n relatively prime to 13,
let U,,(X,Y) be a polynomial such that U, (f(7), f(nT)) = 0. Then we get the following
assertions:
(1) ¥n(X,Y) € Z[X, Y] and degx Vn(X,Y) = degy Vn(X,Y) =n]],,(1+1/p).
(2) U, (X,Y) is irreducible both as a polynomial in X over C(Y') and as a polynomial
in'Y over C(X).
(3) U, (X,Y)=9,(Y, X).
(4) Ifn is not a square, V,,(X, X) is a polynomial of degree > 1 whose leading coefficient
15 £1.
(5) (Kronecker’s congruence) Let p be an odd prime. Then

W,(X,Y) = (X7 Y)(X = ¥7) (mod pZ[X,Y]).
Proof. We write I for T'g(13). We note that f(7) = ¢ ' [[0o_, (1 — ¢™)*(1 — ¢*3™)~2 has a

Fourier expansion

oo
fr)=q¢ '+ Z cmq™, where ¢, € Z,

m=0
and let v be an automorphism of Q(¢,) over Q such as 1x(¢,) = ¢ for k relatively prime
to n. The action of (0 n/a> on fis

(o6 ) = (577 = (5%)

b a2 o b a2m

—ab, — " abm

= G+ Y emCEmg
m=0

Then v induces an automorphism v, of Q(¢,)((gq 1/”)) over Q(¢p) :

i (fo(g n%) <T)> Gy

Choosing 0 < b < n/a such that b = bk (mod n/a), we have ab/ = abk (mod n) and

D

a b a b

= fo (0 n/a) =fooa (0 n/a) = foaay.

wk(\lln(va(T))) = \I/n(er(T))
and U, (X, f(7)) € Q((¢"/™))[X]. Furthermore, we have W,,(f(7/n), f()) = 0 and [C(f(7/n),
f(r)) - C(f(7))] < dsince (foar0)(r) = (fo (§2))(7) = f(7/n) where d =[], (1 +1/p).

Y (foagy)

Hence
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For a,b, Ty C T (§9)T, there exist 7,7 and v,y in I' such that

10 N
v 0 n Ya,b = 7 Qa,b,
ie, (§9) by, €T =To(13).

We consider an embedding &, , of C(f(7/n), f(7)) to the field of all meromorphic functions
on $ containing C(f(7/n), f(r)) over C(f(7)) defined by
ga,b(h) =ho Ya,b-
In fact, £up(f) = f and

/) = (e (g 1))@

_ ( fo <}) 2) %,b) (7) = (f o aup)(r)-

When gy # aq p, we have foauy # f oy . This means that there exist distinct d
embeddings &, of C(f(7/n), f(1)) over C(f(7)) and
T
(£ (%) .£m) ;)] =d.
Therefore, ¥, (X, f(7)) is irreducible over C(f(7)).

Let F(X,Y) be the polynomial in Lemma 2.2. Let fi1(7) = f(7) and fo(r) = f(n7),
and let dy (respectively, d,) be the total degree of f(7) (respectively, f(n7)). Let a =
— Esesl,wﬂSQ,o ords f(7). Then

F(X,Y)=Cyg X"+ Y CijX'Y7.

0<i<dn,
0<j<di

Since F(X, f(7)) is the minimal polynomial of f(7/n) over C(f(7)) and F(f(r/n),Y) is a
minimal polynomial of f(7) over C(f(7/n)), we get
(X
Fr) (X, () = HELT,
In our case, a =0, F(X,Y) € Z[X,Y], and ¥, (X,Y) € Z[X,Y]; hence, (1) and (2) follow.

(3) We observe that (foou,0)(7) = f(n7). Since ¥, (f(n7), f(7)) =0, ¥,,(f(7), f(T/n)) =
0 and f(r/n) is a root of ¥, (f(7),X) = 0. From that ¥, (X, f(7)) € Z[X, f(7)] and
U, (X, f(7)) is irreducible, there is a polynomial ¢(X, f(7)) such that

Un(f(7), X) = g(X, f(7))¥n(X, f(7)).
By changing the places of variables and multiplying g(X, f(7)), we get

9(X, f(O) (X, f(7)) = g(X, f(7)g(f(7), X)Un(f(7), X),
which is just ¥, (f(7), X); so, g(X,Y) should be £1.

Suppose that g = —1. Then U, (f(7),X) = =¥, (X, f(7)) and by substituting f(7) for
X, we have W, (f(7), f(7)) = =Y, (f(7), f(7)); so, f(7) is a root of ¥, (X, f(7)) = 0 and
the polynomial X — f(7) divides ¥, (X, f(7)). However, ¥, (X, f(7)) is irreducible over
C(f(7)), so we get a contradiction. Therefore, g =1 and U, (f(7), X) = ¥,.(X, f(71)).
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(4) Consider that

_ —ab 2> 1
(4.1) Fr) = (foanp)(r) =q~ = (% ™ +O(qn).
If n is not a square, the coefficient of (4.1) is a unit; hence, ¥, (f(7), f(7)) is a unit.
Therefore, ¥,,(X, X) is a polynomial with constant term +1.

(5) Let p be an odd prime with p # 13. For g(7), h(1) € Z[(,)((¢"/7)), we write
g(t) = h(r) (mod «)

if g(7) = h(7) € aZIG)((g™))-
Consider the following for f(7) = ¢~ + Yoo Cmq™:

(Foary)(r) = Gtq v+ Z emCmq”

= q P+Zcmq% (mod 1 —¢p)
= (foal,o)( ),
(foap)(T) = ¢+ cmd™

I
Q\
b
+
3%
Qﬁ
g
I
g
2
=
=)
o
o,
=

((fearo)())? = (q; +> Cf(m)q7;>

m=0
= ¢+ cm)g™ (mod 1)
m=0
= f(m)
We thus get
V(X f(r) = | [I X=(foan)r ] — (feapo)(7))
0<b<p
= (X —(foaro)(m)P(X - (mod 1 —¢p)
= (XP = (foaio)(m)P)(X — ( ) ) (mod 1—¢p)
= (XP = f(O)X = f(7)") (mod1—¢)
and

Do U(fENXY = WX, f () = (XP = ()X = F(T)P) € (1= G) - ZIX, f(7)]-
By the fact that
U,(X,Y) - (XP-Y)(X -YP) € Z[X,Y],

1y (f(7)) belongs to Z and (1 — () divides ¢, (f(7)) in Z[{p]((ql/n)). Hence ¥, (f(1)) €
pZ[f(7)] and (5) is proved. O
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To prove our last theorem, we need to find criteria for being modular units. Let j(7) be
the classical elliptic modular function. By definition a modular unit over Z is a modular
function h(7) of some level N which is rational over Q((y) such that h(7) and 1/h(7) are
integral over Z[j(7)].

Lemma 4.4. Let h(7) be a modular function of some level N which is rational over Q({n)
for which h(T) has neither zeros nor poles on $. If for every v € SLa(Z) the Fourier
expansion of h o~ has algebraic integer coefficients and the coefficient of the term of lowest
degree is a unit, then h(T) is a modular unit over 7Z.

Proof. One can refer to [8, Chapter 2, Lemma 2.1], which is proved by the theory of Shimura
reciprocity law [10]. O

Let h(7) be a modular unit over Z and K be an imaginary quadratic field. Since it is
well known that j(7) is an algebraic integer for every 7 € K — @Q, we can derive that for
such 7, h(7) is an algebraic integer which is a unit. By observing this fact and the following
elementary lemma, we derive the property of r13(7).

Lemma 4.5. Let p be a prime and r,s € Z such that (p,rs) = 1. Then
(1= G =)™

is a unit of Z[Gn].

Proof. If s € (Z/p"7Z)*, then r = st (mod p") for some t € Z~g. So

=G 1-¢n o
Similarly, (1 — C;n)(l — an)fl € Z[Gpn]- -

Proof of Theorem 1.3. It is enough to prove that 713(7) is a modular unit over Z. Let
v =(2}) € SLy(Z). By (3.1) and Proposition 3.3, we get

HK%%) 35
e = R R ) R
)

1
By (K1) in Section 2, the action v on 7“13(7' i
(

a+cj b+dj T)K 3a+cj 3b+dj (T)K 4a+tcj 4b+dj (7‘)
7’13’YT C Il 13’13) ( 13 ’13) ( 13 ’13) )
’ 4 K 2a+c] 2b+d] ) (T)K( 5al-li—))cj75bl-gdj ) (T)K( 6a1-|:—3cj76b1—¢:—3dj ) (T)

13

If we replace the Klein forms by the g-products in (K4) and expand the products as a series,
then the series is the Fourier expansion of r13(y7). Since we want to prove that r13(y7) has
algebraic integer Fourier coefficients and the coefficient of the lowest degree term is a unit,
we may assume that
0<(la+c¢j)/13< 1, forl=1,...,6
by (K2). If we assume these, then the only term we should consider in (K4) is
1—q =1- 5™,

First, assume that ¢ is a multiple of 13. Then a is relatively prime to 13 and la+c¢j = la Z 0
(mod 13); thus, the exponent (la+ ¢j)/13 of ¢ is not an integer for any 1 <! <6 and 1 —g,
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cannot be complex numbers, namely it has algebraic integer coefficients with the coefficient
of the lowest degree term 1, and the series expansion of r13(77) has the desired properties.
Now assume that for given ¢ € (Z/13Z)*, there exist unique j1,...,js € {0,---,12} such
that
la+c-57=0 (mod 13), foreachl=1,...,6.
Hence, the coefficient of the lowest degree term of ri3(y7) is
(1= Gy = G ) - G

2+d-j brdj 6b+d-j
(1= G5 ™) (1 = ¢y ) (1 = ¢y ™)

(4.2)

up to a unit. Since

(Z jl> _ <la—|—c-jl lb—i—d-jz) <d —b) _ (la—i—c.jld lb"'d'jlc *>
13713 13 ’ 13 —Cc a 13 13 ) )

Il=(a+c-j)d—(Ib+d-j)c=—(b+d-j)c (mod 13). Hence for each [ £ 0 (mod 13),
ib3+d'jl # 1 and (4.2) is a unit by Lemma 4.5. 0

Corollary 4.6. Let f(7) = ¢ '[[02,(1—¢")?(1—¢"*")~2 and K be an imaginary quadratic
field. Then f(7) is an algebraic integer for every T € K — Q.

Proof. By Theorem 1.3, for any 7 € K — Q, 1/r13(7) and r13(7) are algebraic integers.
Hence f(7) = 1/r13(7) — 3 — r13(7) is also an algebraic integer. O

APPENDIX A. MODULAR EQUATIONS F,(X,Y) OF f(7) OF LEVELS p =2,3,5,7,11,13
AND 17

FB(X,Y)=(X2-Y)(X —Y2) —4XY(X +Y +3),

FX,)Y)=(X?-Y)(X - Y3) - 3XY[2XY +26)(X +Y) + 5(X%2 + Y?) + 11XY + 56],

F5(X,Y) = (X° = Y)(X - Y?)
—5XY[(2X3Y? +106X2Y? + 1378XY +4394)(X +Y) + (9X?Y? + 250X Y + 1521)(X? + Y?)
+(20XY +260)(X? 4+ Y3) +20(X* + Y*) +22X3Y? 4+ 548X 2Y? 4 3718XY + 5712],

Fr(X,Y)=(X"=Y)(X =Y

—TXY[(2X°Y® + 210X*Y* + 6778 XY + 88114X2Y? + 461370XY + 742586)(X +Y)
+(13X4Y* + 848 X3Y3 417764 X2Y2 + 143312XY + 371293)(X?% 4+ Y?)

+(48X3Y3 + 2058 X2Y? 4 26754 XY + 105456)(X° 4+ V?) + (105X2Y? 4 2807XY + 17745)
(X' 4+ Y%) + (126 XY 4 1638)(X° + YV°) +65(X° +Y5) +30X°Y5 + 1566 X*Y* 4 31400X°Y>
+264654XY2 + 856830XY + 689544],

FuX,Y)=X"-Y)(X -Y

XY [(2X7Y? 4 462X%Y® 4 32328 X 7Y 4 1079056 X °Y® + 21825550 X°Y® 4 283732150 X Y
+2370686032X3Y 3 4+ 12003160104 X2Y? + 28989814854 XY + 21208998746)(X + Y) + (21 X¥Y®
+3004X 7Y T + 148381 X°Y° 4 3871222X°Y" + 63156789XY* 4 654236518 X3y
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+4237909741 X2V 2 4 14499734236 XY + 17130345141) (X% 4+ Y?) + (136 X7Y" 4 13314X°Y®
+494114X5Y5 + 10358244 XY + 134657172X3Y 3 + 1085568458 X 2Y 2 + 4943395002 X Y
+8533798312) (X3 + Y3) + (595X5YC 4 41857X°Y5 4 1212811 X*Y? 4 20350590 X3y 3
+204965059X %Y 2 + 1195477777XY + 2871951355)(X* + Y*) + (1818 X°Y™® 4 94446 X 1Y
+2169148 XY 4 28198924 X 2Y 2 4+ 207497862XY + 675010674)(X° + Y°) + (3883 X4y
+151074X3Y3 + 2706539 X %Y 2 + 25531506 X Y + 110902363) (X 4 V) + (5632X3Y3
+164326X2Y2 + 2136238 XY + 12373504) (X7 +Y7) + (5175X%Y? + 109113XY + 874575)(X®
+Y8) 4+ (2590XY + 33670)(X° + Y?) +481(X'0 + Y10) + 44Xy 4 4883X°3Y® + 222110X 7Y
+5629459 XY 4 91150852 X°Y° 4 951378571 XY + 6343683710X Y + 23569308347 X 2y
+35892151724 XY + 12532590168],

Fi3(X,Y) = Y13 _ yl3yl12

—13X[2Y2 + Y XM 4 (25Y12 26V + 13Y10) X 10 4 (1961 4325V 4+ 338Y710
+169Y?) X7 + (1064Y "2 + 2548Y ' + 4225Y10 + 4394Y° + 2197Y®) X® + (41802 + 13832y !
43312410 4 54925V 4 57122Y8 4 28561Y ") X7 + (12086Y 2 + 54340Y ! 4 179816Y1°
+430612Y Y + 714025Y® + 742586Y 7 + 371293Y6) X + (25660Y 12 4 157118Y ! 4 706420Y 0
+2337608Y° 4 5597956Y® + 9282325Y7 + 9653618Y 6 + 4826809 °) X5 + (39182Y!2 + 33358071
+2042534Y 10 + 9183460Y % + 30388904Y 8 + 72773428Y 7 + 120670225Y 6 + 125497034Y°
+62748517Y4) X4 + (4114072 + 509366Y 1! + 4336540710 4- 26552942Y % + 11938498078
+395055752Y7 + 946054564Y 6 + 1568712925Y° + 1631461442V + 815730721 %) X3 + (27272Y*2
+534820Y 1! 4 6621758Y 10 + 5637502077 + 345188246Y 8 + 1552004740Y 7 + 5135724776Y 6
+12298709332Y° 4 20393268025Y1 + 21208998746Y 3 + 10604499373Y2) X2 + (9604Y'2
13545361 4- 6952660710 + 86082854Y Y + 7328752607 % 4 4487447198Y 7 + 20176061620Y°
+66764422088Y° + 159883221316 + 265112484325Y 3 + 275716983698 2 + 137858491849Y ) X
+(1165Y12 + 124852Y 1 + 4608968Y 10 4 90384580Y Y + 1119077102Y® + 9527378380Y "
+58336813574Y° 4 262288801060Y° + 867937487144Y 1 4 2078481877108Y > + 3446462296225Y 2
+3584320788074Y + 1792160394037)],

Fi(X,Y)= (X7 - Y)(X -Y1T)

—17XY[2X Y15 4+ 1006 XYM + 149368 X 13y 13 4 9449296 X 12y 12 4 277283808 X 11y !
+2807841744X Y0 — 57040799630X°Y° — 2270242197246 X8Y® — 29513148564198X Y7
—125318636787110X°Y® 4 1042531984654992X°Y 5 + 17399147740112736X4Y*
+100205053507291408 X 3Y 3 + 267691413736518616 X %Y 2 + 304692357231806518 XY
+102371786028181514)(X + V) + (33X 14y + 10157X 13y 1?4 1036338 X 12y 12
+46468884X 1Y 4 937380339X 10y 10 4 2995082193 XYY — 267189542724 X3y
—5871087945322X 7Y " — 45155032720356X Y ® + 85542542514273X°Y 5 + 4524555856708251 X 4y
+37906096249385364X3Y 3 + 142867993725808962X 2Y? + 236638650589039517XY
+129933420728076537) (X2 + Y?) + (348X 13Y13 - 72900 X 12Y"? + 5330940 X My !
+172095882.X 10V 10 4 2429452302 XY — 443129954 X8Y® — 548090669746 X 7Y "
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—7125178706698 X Y6 — 973556508938 X°Y® + 902038633566486.X4Y* + 10798761377306994 X 3Y 3
+56531949887500620 X 2Y 2 4 130648492725297300X Y + 105400537094104044) (X3 4 Y?)
+(2610X12Y12 + 390234 X 1Y 1 420741415 X 10V 10 4 491255172 XY 4 5806735314 X Y8
+33465558288 XY T + 131762476550 XY + 5655679350672X°Y 5 4 165846167303154X 1Y
+2371194885506148 X 3Y3 + 16919409412510215X 2Y? + 53797070708202666 X Y
+60808002169675410)(X* 4+ Y*) + (14688 X 11y 4 1593248 X 10y 10 + 61339470X°Y?
+1140305022X8Y® + 17187561070X 7Y + 285078068466 XY ® + 3706014890058 X°Y®
+37761071670790X Y% + 423387272533446 XY 3 + 3848960776065990X?Y 2 + 16895597417033504XY
+26323251867615456)(X° 4+ Y°) + (63848 X 10V 10 + 4988615 XY + 136925586 X 5y 8
+2406980596 X 7Y 7 + 55738342810X°Y 4 987969825467 X°Y° + 9419779934890 X4y 4
+68745772802356 XY + 660913650835074X 2Y 2 4 4069366510741415X Y + 8801988987574952)

(X® 4+ Y°) + (217580 XY 4 11851494 X8Y® + 225876162X Y7 4 5041477534 X °Y°
+138821927106X°Y5 + 1804685052378 X 1Y 4 11076126142198 X3V + 83866237817466 X %Y >
+743663672734398 XY + 2307326973577340) (X7 + Y7) 4 (584079X3Y® + 20627250X 7Y "
4260091576 X°Y 5 4 9359618100X°Y® 4 213828174988 X4Y* + 1581775458900X3Y 3
7428475502136 X 2Y 2 + 99563795945250X Y + 476451183790959)(X® + V) + (1230630X7Y”
+23904234X5Y° 4+ 158815970X°Y 5 + 11625462802X4Y* + 151131016426 X3Y3 + 348918686090X 2Y 2
+8875474754562 XY + 77220207475710) (X% + V) + (2010261 XY + 12158085 X°Y®
—118403154X4Y* + 4866872225 XY 3 — 20010133026 X %Y 2 + 347247065685 XY + 9703145887149)
(X0 4 Y19) 4 (2488512X°Y5 — 12961106 XY+ — 503723122X3Y3 — 6548400586 X 2Y 2
—28475549882 XY + 923967086016) (X1 + Y1) + (2248129X4Y* — 32004376 XY — 684731010X Y2
—5408739544 XY + 64208812369)(X % + Y'?) + (1393390X°Y® — 27203110X%Y? — 353640430 XY
+3061277830) (X + Y1¥) + (532563 X2Y2 — 8091869XY + 90003147)(X ™ + Y1) + (101964 XY
+1325532(X 0 4+ Y1%) 4+ 5802(X 0 4 V16) 4 64X PV + 15271 X M4y M 1414170 X By 13
460227704 X 12Y12 4 1122003630 X 1Y — 1373219807X 0y 10 — 511693728152X°Y°
—10467989087570X8Y® — 86476240057688X 7Y T — 39220530907727 XY + 5415697219316670X°Y®
+49129588408094584 X *Y* + 194955343418100330X Y + 355785057905407351 X 2Y 2
+251992088684754496 XY + 39142153481363520).

APPENDIX B. MODULAR EQUATIONS F,(X,Y) OF ri3(7) OF LEVELS p = 2,3,5,7,11,13
AND 17

Fo (X, V)= X3V2 + X2+ XY3 - Y 4+ 2XY(XY - X +Y +1)

F(X,)Y)=(X3-Y)(X -Y3) - 3XY[(XY - 1)(X +Y)+ (X2 +Y?) + XY],

F5(X,Y) = (XY° 4+ 1)(X° -Y)

+EXY[X3Y3(X 4+2Y) = 3X2V2(X2 - V) + XY (2X3 +V3) — (X + V") —9X?Y3(X - Y)
+6XY (X2 +Y?) — (X3 4+2Y3) —9XY(X - V) +3(X2 - V%) + X'V 4+ 6X3Y3 4 6XY
—2X - Y +1],
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Fo(X,Y) = (XYT+1)(X7-Y)

—TXY[2TX?Y3(XY — 1)(X +Y) = XOV®(X +3Y) + (3X +Y) + XV*(20X - 7Y)
+XY(7X —20Y) — XY (22X2Y2 +47XY 4 22)(X? + Y?) + 3X v (X2 - 2YV?)
—3(2X% - Y?) + XY (20X3 — 7Y3) + X?Y2(7X3 - 20Y3) — 7(X3Y? - 1)(X3 + V)
—AXY(X*T YY) - 3(X* —2vh) £ 3X2V?(2X! — Y + (X +3Y°) — XY (3X° 4+ YP)
H(XO+ V%) — X0 —4X%Y® 447XV £ 56 X3Y 3 4 47X?Y? — 4XY — 1],

Fi(X,Y) = (Xy" +)(x" —-v)

F11IXY[2470(X°Y° — XWYH)(X +Y) —6XY(4X - V) — 6X3V3(X —4Y) — X?Y?(79X
—147Y) — XTYT(147X — 79Y) + 3X°V (691X + 1439Y) — 3X3Y3(1439X + 691Y) + 2X3Y3
(2717X2Y? — 4187XY + 2717)(X? + Y?) + 2XV (52X % + 7Y?) + 2X YV (7X? + 52Y?)
+2(8X2% — Y?) + 2X2Y2(481 X% + 284Y?) — 2XOY6(284 X2 — 481Y?) + 2070X?Y?(X3Y?
—1)(X3 4+ Y?) - 3X1Y*(1439X3 + 691Y3) + 3X3Y3(691 X3 4 1439Y3) — 2(18X® + 5Y)
+2XTYT(5X3 +18Y3) — X3Y3(307X3 — 267Y?) — XY (267X> — 307Y3) + 2XY (233X 4y*
+235X3Y3 4+ 233)(X? + Y1) +8(7X* — 5Y*1) — 8XOyO(5x* — 7y?) — 2X1y (481X
—284Y?1) + 2X2Y2(284 X% — 481X%) + 60(X°Y° — 1)(X° 4+ Y?) + X?Y?(147X° — 79Y?)
+X3Y3(79X5 — 147Y°) — XY (307X° — 267Y°) — X1Y*(267X° — 307Y®) + 10X 2y ?(X6
+Y°%) +2X3Y3(52X6 + 7Y ) 42XV (7XC + 52Y°%) — 8X*Y*(7X6 — 5Y0) + 8(5X° — 7vF)
+2X3Y3(18X7 +5Y7) —2(5X7 +18Y7) — 6X?Y2(4XT —Y") —6XY (X" —4Y7) +2XY
(X 4+Y®) —2X2Y2(8X® — V®) + 2(X® — 8Y®) — (X104 Y10) 4 X0y10 4 5X9v10 4 2o x9Y?
—10X8Y8 +470X7Y 7 4 8374X5Y6 + 5X10V — 9592 X5y — 5V + 8374X4Y* + 470X3Y3
—10X2Y? 4 2XY — 5X +1],

Fi3(X,Y) =

(V12 418V + 129710 4 450Y° + 6908 + 18Y7 — 911Y°® — 18Y° 4 690Y* — 45072 + 12972
—18Y + 1) X1  (13Y12 4 221V M + 1495V10 + 4940V + 7345Y8 + 1079Y7 — 7267Y°
—1040Y° + 4355Y4 — 2015Y 3 4 377Y2 — 26Y) X2 + (78Y 12 + 1183V M + 71630 + 2154177
+30940Y® + 10075Y 7 — 21099Y6 — 9841V 4 13000Y4 — 3991Y3 + 455Y2 — 13Y) X 1!
+(299Y12 4+ 37311 4 18837Y10 4 50245V + 74126Y® + 41548Y7 — 34307Y5 — 25610Y°
+214117* — 6292V + 1066Y 2 — 91Y) X0 + (819Y'2 4 7553V + 299000 + 77181y
+134303Y8 + 105092Y 7 + 2249Y° — 225297 4 12012Y* — 897V — 2847Y2 + 676Y ) X
+(1638Y 12 + 9230711 + 29458Y 10 + 9126077 + 169312Y® + 2222617 + 181649Y°
+45617Y5 + 35594Y1 — 39Y3 — 1053Y2 — 1729Y) X8 + (2405Y1% + 4134y 4 31707y 10
+42328Y° 4 138658Y® + 191854Y7 + 260013Y°® + 201695Y° + 58539V + 47060Y> + 4186Y
+2535Y) X7 + (253512 — 4186Y M + 47060 ° — 58539V + 201695Y® — 260013y 7
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+191854Y% — 138658Y° + 423284 — 31707Y3 + 4134Y2 — 2405Y) X6 + (1729Y 12
—1053YM + 39V 10 4+ 355949 — 45617Y® + 181649y 7 — 222261V + 169312V

—91260Y* + 29458Y % — 9230V + 1638Y) X° + (676Y 1% 4 2847y 1 — 897Y10 — 12012Y”°
—22529Y% — 2249Y7 + 105092Y° — 134303Y° 4 77181V — 29900V + 7553Y2 — 819Y) X*
+(91Y12 4 1066Y 1 4 6292Y 10 + 21411Y7 + 25610Y® — 34307V 7 — 41548Y® + 74126Y°
—50245Y* +18837Y3 — 3731Y? 4+ 299Y) X3 — (13Y*? + 455V 4 3991Y1? 4 130007
+9841Y® — 21099Y " — 10075Y° + 30940Y° — 21541V 4 71633 — 1183Y2 + 78Y) X *
+(26Y12 + 3777 4 2015710 + 4355V + 1040Y® — 7267y 7 — 1079V + 7345V
—4940Y* 4 1495Y3 — 221Y2 + 13Y)X — Y% — 18Y12 — 120V M — 450710 — 6901

—18Y8 4+ 911Y7 + 18Y% — 690Y° + 450Y% — 129Y3 + 18Y2 — Y,

Fir(X,Y) = (X" -Y)(x - Y7

—17XY (XY p162x My 4 7565 X B8 4130796 X 12Y 12 4 1108735y 1!
+4690617X 10V 10 4 5573662 XY 4 4972452 X8Y® — 4972452X YT — 5573662X Y6
—4690617X°Y® — 1108735 X4Y* — 130796 X3Y 3 — 7565X2Y? — 162XY — 1)(X +Y)
+(802X 13y 13 4+ 21656 X 12V 12 4 177732X 1Y 1 + 444265 X 10V 10 — 587823 XY
—3035548X8Y 8 — 5449182 X 7Y — 3035548 X0Y6 — 587823 X°Y5 + 444265 X1y
H177732X3Y 3 4 21656 X 2Y? + 802X Y + 8)(X? + Y?) + (41X 1BY!3 4 2572 X 12y 12
+31049X 1y H — 112484 X190 — 1815352 XYY — 2938240 X8Y® — 1946882X Y
+1946882X Y 4 2938240 X°Y 5 + 1815352X4Y* + 112484 X3Y3 — 31049X%Y? — 2572XY
—41) (X3 +V3) + (152X 1212 ¢ 5702X My M 4 3313 X 10710 — 671569X°Y? — 2010796 XBY®
—394118X 7Y — 1609356 X5YS — 394118 X°Y5 — 2010796 X*Y* — 671569X3Y 3 + 3313X2Y?
+5702XY + 152)(X? + Y4) + (420X 1y 4 8879 X 10V10 — 63934 X9V ? — 787172X8Y®
—329602X 7Y — 1645574 X5Y5 + 1645574 X°Y® 4 329602X4Y* 4 787172X3Y3
+63934X%Y? — 8879XY — 429)(X° + Y®) + (943X V10 + 9625 XYY — 104188 X3Y®
—246330X Y7 4+ 197325 XY 4 1147150 X°Y5 + 197325 XY — 246330 X3Y3 — 104188 X2Y?
+9625XY + 943) (X + Y6) + (1628 XY + 8736 X5Y® — 34032X7Y7 + 333791 X°Y®
—107541X°Y® + 107541 X4Y* — 333791 X3Y 3 4 34032X2Y? — 8736 XY — 1628)(X" +Y7)
+(2188X%Y® 4 11038X7Y 7 + 86419X°Y5 — 69205X°Y> + 352004 X 4Y* — 69205 X33
+86419X %Y % 4+ 11038 XY + 2188)(X® + V¥) + (2236 X Y7 + 14714X°Y° 4 22005 X°Y?
+93983X4Y* — 93983 X33 — 22005 X%Y? — 14714XY — 2236)(X° + Y?) + (1666 X°Y©
+8178 XY +1029X4Y* — 658 XY 4+ 1029X2Y? + 8178XY + 1666)(X ' + V10
+(822X°Y5 + 990X 1Y * + 7728 X3Y3 — 7728 X%Y? — 990XY — 822)(X M + Y1)
+(234X Y - 48X3Y3 — 2948 X2Y2 4 48XY + 234)(X'2 4+ Y'?) + (36 X3Y3 + 180X Y2
—180XY —36)(X13 + Y1¥) — 213X Y (XM + vM) — 6(X'10 + Y10) 19X 5y 15 4 1491 x My 1
+41816 X 13y 13 4 530775 X 12y 12 + 3722685 X M Y1 4 10393859X 10y 10 1 10751728 XY
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+14168096 X3Y® + 10751728 X 7Y 7 + 10393859X°Y° + 3722685 X°Y® + 530775 XY
+41816X°Y? + 1491 X2Y?2 + 19X Y.
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