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THE LEVEL 13 ANALOGUE OF THE ROGERS-RAMANUJAN

CONTINUED FRACTION AND ITS MODULARITY

YOONJIN LEE1 AND YOON KYUNG PARK2,∗

Abstract. We prove the modularity of the level 13 analogue r13(τ) of the Rogers-
Ramanujan continued fraction. We establish some properties of r13(τ) using the modular
function theory. We first prove that r13(τ) is a generator of the function field on Γ0(13).
We then find modular equations of r13(τ) of level n for every positive integer n by using
affine models of modular curves; this is an extension of Cooper and Ye’s results with levels
n = 2, 3 and 7 to every level n. We further show that the value r13(τ) is an algebraic unit
for any τ ∈ K −Q, where K is an imaginary quadratic field.

1. Introduction

Let H be the complex upper half plane and q := e2πiτ for τ ∈ H. The Rogers-Ramanujan
continued fraction r(τ) is defined by

r(τ) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·

.

It can be also written as an infinite product as follows:

(1.1) r(τ) = q
1
5

∞∏
n=1

(1− qn)(
n
5 )

with the Jacobi symbol
(
n
N

)
. On the other hand, it has the following interesting properties:

(1.2)
1

r(τ)
− 1− r(τ) = q−

1
5

∞∏
n=1

(1− q
n
5 )

(1− q5n)

and

(1.3)
1

r5(τ)
− 11− r5(τ) = q−1

∞∏
n=1

(1− qn)6

(1− q5n)6
.

The identity in (1.1) was proved in [9], and (1.2) and (1.3) were stated by Ramanujan [1,
p. 85 and p. 267] and proved by Watson [11].
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Recently, Gee and Honesbeek studied the modularity of r(τ) and evaluated r(τ) for an
imaginary quadratic quantity τ [6]. Cais and Conrad investigated the modular equation of
r(τ) and its properties in the view of arithmetic models of modular curves [3].

For any positive integer N > 2 with
(−1
N

)
= 1, we define the level N analogue of the

Rogers-Ramanujan continued fraction to be

rN (τ) := qαN

∞∏
n=1

(1− qn)(
n
N ),

where

αN =

[N2 ]∑
r=1

r(r −N)

2N

( r

N

)
and [·] denotes the floor function value. For example, α5 = 1/5, α10 = 3/5 and α13 = 1.
We notice that r5(τ) is exactly the same as the Rogers-Ramanujan continued fraction r(τ).

In Ramanujan’s second notebook [1, Entry 8 (i)] he stated r13(τ) satisfies the following
identity:

(1.4)
1

r13(τ)
− 3− r13(τ) = q−1

∞∏
n=1

(1− qn)2

(1− q13n)2
.

We prove the modularity of r13(τ) (Theorem 1.1). We establish some properties of r13(τ)
using the modular function theory. We first prove that r13(τ) is a generator of the function
field on Γ0(13). We then find modular equations of r13(τ) of level n for every positive
integer n by using affine models of modular curves (Theorem 1.2); this is an extension of
Cooper and Ye’s results with levels n = 2, 3 and 7 to every level n. We further show that
the value r13(τ) is an algebraic unit for any τ ∈ K −Q, where K is an imaginary quadratic
field (Theorem 1.3).

The examples of the modular equations are given in Appendix, which includes Cooper and
Ye’s result [5]. Assuming that the value r13(τ) is given, Cooper and Ye expressed r13(2

nτ)
and r13(3

nτ) in terms of radicals for n ∈ Z; they used the modular equations of r13(τ)
obtained from the identities in [2]. By Theorem 1.2 or modular equations in Appendix B,
we obtain the values r13(rτ) for any positive rational number r.

It was proved that r13(
√−n/2) is a unit in [5, Theorem 6.2] for any positive integer n.

Using a completely different approach, we prove that r13(τ) is a modular unit, and therefore
r13(z) is a unit for every z ∈ K −Q.

We state our main results as follows.

Theorem 1.1. The level 13 analogue of the Rogers-Ramanujan continued fraction r13(τ)
is a modular function on Γ1(13). Moreover, the field of modular functions on Γ0(13) is
generated by 1/r13(τ)− r13(τ).

Theorem 1.2. For any positive integer n, there is a modular equation Fn(X,Y ) of r13(τ)
of level n.

Theorem 1.3. Let K be an imaginary quadratic field. Then r13(τ) is a unit for every
τ ∈ K −Q.
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This paper is organized as follows. Section 2 provides brief preliminaries about modular
functions and Klein forms and states lemmas regarding the cusps of congruence subgroup
Γ0(N). Furthermore, we describe a method to get an affine model which is used for the
proof of our main theorems. In Section 3, we focus on the functions with modularity of
level 13. These are stated in Ramanujan’s second notebooks [1]. In Section 4, we prove
Theorem 1.1 and 1.2, where we show the modularity of r13(τ) and give the properties of
modular equations of 1/r13(τ) − 3 − r13(τ). Then, we prove that r13(τ) and 1/r13(τ) are
algebraic for any imaginary quadratic quantity τ ; hence, r13(τ) is a unit. Furthermore, we
obtain the modular equation of r13(τ) in Appendix B for levels 2, 3, 5, 7, 11, 13 and 17 using
MAPLE program.

2. Preliminaries

We introduce some definitions and properties from the theory of modular functions.
Let H = {τ ∈ C : Im(τ) > 0} be the complex upper half plane, H∗ := H ∪ Q ∪ {∞}, and
Γ(1) := SL2(Z) the full modular group. For any positive integer N , we have congruent
subgroups Γ(N),Γ1(N) and Γ0(N) of Γ(1) consisting of matrices

(
a b
c d

)
congruent modulo

N to ( 1 0
0 1 ), (

1 ∗
0 1 ) and ( ∗ ∗

0 ∗ ), respectively.
A congruence subgroup Γ acts on H∗ by linear fractional transformations as γ(τ) =

(aτ + b)/(cτ + d) for γ =
(
a b
c d

) ∈ Γ, and the quotient space Γ\H∗ becomes a compact
Riemann surface with an appropriate complex structure. We identify γ with its action on
H∗. An element s of Q ∪ {∞} is called a cusp, and two cusps s1, s2 are equivalent under Γ
if there exists γ ∈ Γ such that γ(s1) = s2. The equivalence class of such s is also called a
cusp. In fact, there exist at most finitely many inequivalent cusps of Γ. Let s be any cusp
of Γ, and let ρ be an element of Γ(1) such that ρ(s) = ∞. We define the width of the cusp s
in Γ\H∗ by the smallest positive integer h satisfying ρ−1

(
1 h
0 1

)
ρ ∈ {±1} ·Γ. Then the width

of the cusp s depends only on the equivalence class of s under Γ, and it is independent of
the choice of ρ.

By a modular function on a congruence subgroup Γ we mean a C-valued function f(τ)
of H satisfying the following three conditions:

(1) f(τ) is meromorphic on H.
(2) f(τ) is invariant under Γ, i.e., f ◦ γ = f for all γ ∈ Γ.
(3) f(τ) is meromorphic at all cusps of Γ.

The precise meaning of the last condition is as follows. For a cusp s for Γ, let h be the
width for s and ρ be an element of SL2(Z) such that ρ(s) = ∞. Since

(f ◦ ρ−1)(τ + h) =

(
f ◦ ρ−1

(
1 h
0 1

)
ρ

)
(ρ−1τ) = (f ◦ ρ−1)(τ),

f ◦ ρ−1 has a Laurent series expansion in qh = e2πiτ/h, namely for some integer n0, (f ◦
ρ−1)(τ) =

∑
n≥n0

anq
n
h with an0 �= 0. This integer n0 is called the order of f(τ) at the cusp

s and denoted by ordsf(τ). If ordsf(τ) is positive (respectively, negative), then we say that
f(τ) has a zero (respectively, a pole) at s. If a modular function f(τ) is holomorphic on
H and ordsf(τ) is non-negative for all cusps s, then we say that f(τ) is holomorphic on
H∗. Since we may identify a modular function on Γ with a meromorphic function on the
compact Riemann surface Γ\H∗, any holomorphic modular function on Γ is a constant.

Let A0(Γ) be the field of all modular functions on Γ, and let A0(Γ)Q be the subfield of
A0(Γ) which consists of all modular functions f(τ) whose Fourier coefficients belong to Q.
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We may identify A0(Γ) with the field C(Γ\H∗) of all meromorphic functions on the compact
Riemann surface Γ\H∗, and if f(τ) ∈ A0(Γ) is non-constant, then the field extension degree
[A0(Γ) : C(f(τ))] is finite and is equal to the total degree of poles of f(τ). Since we will
consider the modular functions with neither zeros nor poles on H, the total degree of poles
of f(τ) is −∑

s ordsf(τ), where the summation runs over all the inequivalent cusps s at
which f(τ) has poles.

To recall the Klein form, which is a main tool of this paper, consider the Weierstrass
σ-function by

σ(z;L) := z
∏

ω∈L−{0}

(
1− z

ω

)
e

z
ω
+ 1

2
( z
ω
)2 ,

where L is any lattice in C and z ∈ C. This is holomorphic with only simple zeros at all
points z ∈ L. The Weierstrass ζ-function is also defined by

ζ(z;L) :=
σ′(z;L)
σ(z;L)

=
1

z
+

∑
ω∈L−{0}

(
1

z − ω
+

1

ω
+

z

ω2

)
by the logarithmic derivative of σ(z;L). This is meromorphic with only simple poles at all
points z ∈ L. We can see that σ(λz;λL) = λσ(z;L) and ζ(λz;λL) = λ−1ζ(z;L) for any
λ ∈ C×. In fact ζ ′(z;L) is −℘(z;L) with Weierstrass ℘-function defined by

℘(z;L) :=
1

z2
+

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2

)
.

For any ω ∈ L, ℘(z + ω;L) = ℘(z;L) and d
dz [ζ(z + ω;L) − ζ(z;L)] = 0. In other words,

ζ(z+ω;L)− ζ(z;L) depends only on a lattice point ω ∈ L and not on z ∈ C, so we may let
η(ω;L) be ζ(z+ω;L)−ζ(z;L) for all ω ∈ L. When we fix the basis ω1, ω2 for L = Zω1+Zω2,
for z = a1ω1 + a2ω2 ∈ L with a1, a2 ∈ R, define the Weierstrass η-function by

η(z;L) := a1η(ω1;L) + a2η(ω2;L).

Note that η(z;L) does not depend on the choice of the basis {ω1, ω2}, and it is well-
defined. Moreover, η(z;L) is R-linear so that η(rz;L) = rη(z;L) for any r ∈ R.

We define the Klein form by

K(z;L) = e−
η(z;L)z

2 σ(z;L).

For a = (a1, a2) ∈ R2 and τ ∈ H, we further define

Ka(τ) = K(a1τ + a2;Zτ + Z)

as the Klein form by abuse of terminology. We observe that Ka(τ) is holomorphic and
nonvanishing on H if a ∈ R2−Z2 and homogeneous of degree 1, i.e., K(λz;λL) = λK(z;L).

The Klein form satisfies the following properties. Let γ =
(
a b
c d

) ∈ SL2(Z) and a =

(a1, a2) ∈ R2.

(K0) K−a(τ) = −Ka(τ).
(K1) Ka(γτ) = (cτ + d)−1Kaγ(τ).
(K2) For b = (b1, b2) ∈ Z2, we have that

Ka+b(τ) = ε(a,b)Ka(τ),

where ε(a,b) = (−1)b1b2+b1+b2eπi(b2a1−b1a2).
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(K3) For a = (r/N, s/N) ∈ (1/N)Z2−Z2 and γ ∈ Γ(N) with an integer N > 1, we obtain
that

Ka(γτ) = εa(γ)(cτ + d)−1Ka(τ),

where εa(γ) = −(−1)((a−1)r+cs+N)(br+(d−1)s+N)/N2
eπi(br

2+(d−a)rs−cs2)/N2
.

(K4) Let τ ∈ H, z = a1τ + a2 with a = (a1, a2) ∈ Q2 − Z2 and further let q = e2πiτ and
qz = e2πiz = e2πia2e2πia1τ . Then

Ka(τ) = − 1

2πi
eπia2(a1−1)q

a1(a1−1)
2 (1− qz)

∞∏
n=1

(1− qnqz)(1− qnq−1
z )

(1− qn)2

and ordqKa(τ) = 〈a1〉(〈a1〉 − 1)/2, where 〈a1〉 denotes the rational number such
that 0 ≤ 〈a1〉 < 1 and a1 − 〈a1〉 ∈ Z.

(K5) Let f(τ) =
∏

aK
m(a)
a (τ) be a finite product of Klein forms with m(a) ∈ Z and

a = (r/N, s/N) = (1/N)Z2 − Z2 for an integer N > 1, and let k = −∑
am(a).

Then f(τ) is a modular form of weight k on Γ(N) if and only if{ ∑
am(a)r2 ≡ ∑

am(a)s2 ≡ ∑
am(a)rs ≡ 0 (mod N) if N is odd,∑

am(a)r2 ≡ ∑
am(a)s2 ≡ 0 (mod 2N),

∑
am(a)rs ≡ 0 (mod N) if N is even.

For more details on Klein forms, we refer to [8].

The following lemma is some information on cusps of the congruence subgroup Γ0(N).

Lemma 2.1. Let a, c, a′, c′ ∈ Z be such that (a, c) = 1 and (a′, c′) = 1. We understand that
±1/0 = ∞. We denote by SΓ0(N) a set of all the inequivalent cusps of Γ0(N). Then a/c

and a′/c′ are equivalent under Γ0(N) if and only if there exist s ∈ (Z/NZ)× and n ∈ Z such

that

(
a′
c′

)
≡

(
s−1a+ nc

sc

)
(mod N). Furthermore, we can take SΓ0(N) as the following

set

SΓ0(N) =
{ac,j

c
∈ Q : 0 < c | N, 0 < ac,j ≤ N, (ac,j , N) = 1,

ac,j = ac,j′ ⇔ ac,j ≡ ac,j′ (mod

(
c,
N

c

)
)

}
and the width of the cusp a/c in Γ0(N)\H∗ is N/(N, c2).

Proof. See [4, Corollary 4 (1)]. �

Suppose that two modular functions f1(τ) and f2(τ) satisfy the relation F (f1(τ), f2(τ)) =
0, where F (X,Y ) is a two variable polynomial with complex coefficients. Ishida and Ishii
proved the following lemma, and this lemma shows which coefficients of F (X,Y ) are zeros
[7].

Lemma 2.2. For any congruence subgroup Γ′, let f1(τ), f2(τ) be nonconstants such that
C(f1(τ), f2(τ)) = A0(Γ

′) with the total degree Dk of poles of fk(τ) for k = 1, 2. Let

F (X,Y ) =
∑

0≤i≤D2
0≤j≤D1

Ci,jX
iY j ∈ C[X,Y ]
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be such that F (f1(τ), f2(τ)) = 0. Let SΓ′ be a set of all the inequivalent cusps of Γ′, and
for k = 1, 2,

Sk,0 = {s ∈ SΓ′ : fk(τ) has zeros at s}
and

Sk,∞ = {s ∈ SΓ′ : fk(τ) has poles at s} .
Further let

a = −
∑

s∈S1,∞∩S2,0

ordsf1(τ) and b =
∑

s∈S1,0∩S2,0

ordsf1(τ).

We assume that a (respectively, b) is zero if S1,∞ ∩ S2,0 (respectively, S1,0 ∩ S2,0) is empty.
Then we obtain the following assertions:

(1) CD2,a �= 0. If further S1,∞ ⊂ S2,∞ ∪ S2,0, then CD2,j = 0 for any j �= a.
(2) C0,b �= 0. If further S1,0 ⊂ S2,∞ ∪ S2,0, then C0,j = 0 for any j �= b.
(3) Ci,D1 = 0 for any i satisfying that 0 ≤ i < |S1,0 ∩ S2,∞| or D2 − |S1,∞ ∩ S2,∞| < i ≤

D2.
(4) Ci,0 = 0 for any i satisfying that 0 ≤ i < |S1,0∩S2,0| or D2−|S1,∞∩S2,0| < i ≤ D2.
(5) Suppose further that there exist r ∈ R and N,n1, n2 ∈ Z with N > 0 such that

fk(τ + r) = ζnk
N fk(τ) for k = 1, 2, where ζN = e2πi/N . Then for i, j satisfying

n1i+ n2j �≡ n1D2 + n2a (mod N), we have Ci,j = 0.

If we interchange the roles of f1 and f2, then we obtain further properties similar to (1)
through (4).

3. Modular functions of level 13

Ramanujan studied r13(τ) with the following six complex valued functions μ1(τ), · · · , μ6(τ)
on H:

μ1(τ) := q−
7
13

∞∏
n=1

(1− q13n−9)(1− q13n−4)

(1− q13n−11)(1− q13n−2)
,

μ2(τ) := q−
6
13

∞∏
n=1

(1− q13n−7)(1− q13n−6)

(1− q13n−10)(1− q13n−3)
,

μ3(τ) := q−
5
13

∞∏
n=1

(1− q13n−11)(1− q13n−2)

(1− q13n−12)(1− q13n−1)
,

μ4(τ) := q−
2
13

∞∏
n=1

(1− q13n−8)(1− q13n−5)

(1− q13n−9)(1− q13n−4)
,

μ5(τ) := q
5
13

∞∏
n=1

(1− q13n−10)(1− q13n−3)

(1− q13n−8)(1− q13n−5)
,

μ6(τ) := q
15
13

∞∏
n=1

(1− q13n−12)(1− q13n−1)

(1− q13n−7)(1− q13n−6)
.

Lemma 3.1. [1, Entry 8 (i)]
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(1)

μ1(τ)− μ2(τ)− μ3(τ) + μ4(τ)− μ5(τ) + μ6(τ) = −1 + q−
7
13

∞∏
n=1

(1− q
n
13 )

(1− q13n)
,

(2)

μ1(τ)μ2(τ)− μ3(τ)μ5(τ)− μ4(τ)μ6(τ) = 1 + q−1
∞∏
n=1

(1− qn)2

(1− q13n)2
,

(3)

1

μ1(τ)μ2(τ)
− 1

μ3(τ)μ5(τ)
− 1

μ4(τ)μ6(τ)
= −4− q−1

∞∏
n=1

(1− qn)2

(1− q13n)2
,

(4)

μ2(τ)μ3(τ)μ4(τ)− μ1(τ)μ5(τ)μ6(τ) = 3 + q−1
∞∏
n=1

(1− qn)2

(1− q13n)2
,

(5)
μ1(τ)μ2(τ)μ3(τ)μ4(τ)μ5(τ)μ6(τ) = 1.

Proof. See [1, p.372-375]. �
Remark 3.2. (1) By comparing the infinite products, we get

(3.1) r13(τ) = μ1(τ)μ5(τ)μ6(τ).

(2) The property in (4) of Lemma 3.1 is exactly the same as (1.4).

For simplicity, throughout this paper we denote f(τ) by

f(τ) := q−1
∞∏
n=1

(1− qn)2

(1− q13n)2
.

Proposition 3.3. Let ζN = e2πi/N . We can write the functions μj (j = 1, · · · , 6) by the
following finite product of Klein forms:

(1) μ1(τ) = ζ713
∏12

s=0K(4/13,s/13)(τ)K
−1
(2/13,s/13)(τ),

(2) μ2(τ) = ζ413
∏12

s=0K(6/13,s/13)(τ)K
−1
(3/13,s/13)(τ),

(3) μ3(τ) = ζ1013
∏12

s=0K(2/13,s/13)(τ)K
−1
(1/13,s/13)(τ),

(4) μ4(τ) = ζ1013
∏12

s=0K(5/13,s/13)(τ)K
−1
(4/13,s/13)(τ),

(5) μ5(τ) = ζ613
∏12

s=0K(3/13,s/13)(τ)K
−1
(5/13,s/13)(τ),

(6) μ6(τ) = ζ213
∏12

s=0K(1/13,s/13)(τ)K
−1
(6/13,s/13)(τ).

Moreover, all μ1(τ), . . . , μ6(τ) are modular functions on Γ(13).

Proof. By (K4), the product of Klein forms has an infinite product. We have

12∏
s=0

K( r
13

, s
13)

(τ) = (−2πi)−13ζ3r13q
r(r−13)

26

∞∏
n=1

(1− q13n−r)(1− q13n−(13−r))

(1− qn)26

and
12∏
s=0

K( r1
13

, s
13)

(τ)

K( r2
13

, s
13)

(τ)
= ζ

3(r1−r2)
13 q

1
26

(r1−r2)(r1+r2−13)
∞∏
n=1

(1− q13n−r1)(1− q13n−(13−r1))

(1− q13n−r2)(1− q13n−(13−r2))
.
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By the property (K5) of Klein forms,
∏12

s=0K(r1/13,s/13)(τ)K
−1
(r2/13,s/13)

(τ) is a modular

function on Γ(13). Comparing this with the definition of μj , the result follows immediately.
�

By the following lemma we can see the existence of an affine plane model defined over
Q, which is called the modular equation in this paper.

Lemma 3.4. Let n be a positive integer. Then we have

Q(f(τ), f(nτ)) = A0(Γ0(13n))Q.

Proof. By Theorem 1.1, Q(f(τ)) = A0(Γ0(13))Q. For any α ∈ GL+
2 (Q), f(ατ) = f(τ)

means that α ∈ Q× · Γ0(13). For β = ( n 0
0 1 ), we have

Γ0(13) ∩ β−1Γ0(13)β = Γ0(13n).

So it is clear that f(τ), f(nτ) ∈ A0(Γ0(13) ∩ Γ0(13n))Q.
Thus it is enough to show that Q(f(τ), f(nτ)) ⊃ A0(Γ0(13n))Q. Let Γ′ be the sub-

group of Γ(1) satisfying Q(f(τ), f(nτ)) = A0(Γ
′)Q, and let γ be an element of Γ′. Since

Q(f(τ)) = A0(Γ0(13))Q and f(τ) is invariant under γ, we can see that γ ∈ Γ0(13). Since
f(nτ) is also invariant under γ, f(βγτ) = f(βτ) and f(τ) is invariant under βγβ−1. In
other words, βγβ−1 ∈ Γ0(13) and γ ∈ β−1Γ0(13)β. Hence Γ′ ⊂ Γ0(13) ∩ β−1Γ0(13)β and
Q(f(τ), f(nτ)) = A0(Γ

′)Q ⊃ A0(Γ0(13) ∩ Γ0(13n))Q. �
Lemma 3.5. f(τ) has a simple pole at ∞ and has a simple zero at 0.

Proof. By Lemma 2.1, the group Γ0(13) has two inequivalent cusps ∞ and 0 with width 1
and 13, respectively. Since f(τ) = q−1

∏∞
n=1(1− qn)2(1− q13n)−2 = q−1 +O(1), we can see

that f(τ) has a simple pole at ∞. To observe the behavior at 0, we note

f | ( 0 −1
1 0

)
(τ) = q1/13 +O(1).

By considering the width 13 at 0, ord0f(τ) = 1 and we find that f(τ) has a simple zero at
0. �

Now we suggest an efficient algorithm for finding modular equation.

Lemma 3.6. Let a, c, a′, c′ ∈ Q and f(τ) = q−1
∏∞

n=1(1−qn)2(1−q13n)−2. Then we obtain
the following assertions:

(1) f(τ) has a pole at a/c ∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) = 1 and c ≡ 0
(mod 13).

(2) f(nτ) has a pole at a′/c′ ∈ Q ∪ {∞} if and only if there exist a, c ∈ Z such that
a/c = na′/c′, (a, c) = 1, and c ≡ 0 (mod 13).

(3) f(τ) has a zero at a/c ∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) = 1 and
(c, 13) = 1.

(4) f(nτ) has a zero at a′/c′ ∈ Q ∪ {∞} if and only if there exist a, c ∈ Q such that
a/c = na′/c′, (a, c) = 1, and (c, 13) = 1.

Proof. (1) By Lemma 2.1, f(τ) has a simple pole at a/c if and only if there exists s ∈
(Z/13Z)× such that

(
a
c

)
≡

(
s
0

)
(mod 13). This is equivalent to the condition that

a, c ∈ Z such that (a, 13) = 1 and c ≡ 0 (mod 13).
(3) We note that any a/c ∈ Q∪ {∞} is equivalent to either ∞ or 0. If f(τ) has a zero at

a/c ∈ Q∪ {∞}, a/c is not equivalent to ∞, (a, c) = 1, and (13, c) = 1. If a, c ∈ Z satisfying
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(a, c) = 1 and (13, c) = 1, then a/c ∈ Q is not equivalent to ∞ but equivalent to 0; this
shows that f(τ) has a zero at such a/c.

(2) and (4) are obtained by (1) and (3), respectively. �

4. Proofs of main theorems

Now we prove Theorem 1.1 using Lemma 3.1 and Proposition 3.3 in the previous section.

Proof of Theorem 1.1. Note that Γ1(13) =< Γ(13), ( 1 1
0 1 ) > and Γ0(13) =< Γ1(13), ( 2 1

13 7 ) >.
By Proposition 3.3 since all μ1(τ), . . . , μ6(τ) are modular functions on Γ(13) and

r13(τ) = μ1(τ)μ5(τ)μ6(τ) =
1

μ2(τ)μ3(τ)μ4(τ)
,

r13(τ) is also a modular function on Γ(13). In fact, q = e2πiτ is invariant under the action
τ → τ + 1, r13(τ + 1) = r13(τ); thus, r13(τ) is a modular function on Γ1(13).

For the second statement, it is sufficient to prove that

A0(Γ0(13))Q = Q(f(τ))

with f(τ) = 1/r13(τ)− 3− r13(τ).
Let γ = ( 2 1

13 7 ). Then the action of γ on the product of Klein forms are

12∏
s=0

K( 1
13

, s
13)

(γτ) = ζ926(13τ + 7)−13
12∏
s=0

K( 2
13

, s
13)

(τ),

12∏
s=0

K( 2
13

, s
13)

(γτ) = ζ1113 (13τ + 7)−13
12∏
s=0

K( 4
13

, s
13)

(τ),

12∏
s=0

K( 3
13

, s
13)

(γτ) = −(13τ + 7)−13
12∏
s=0

K( 6
13

, s
13)

(τ),

12∏
s=0

K( 4
13

, s
13)

(γτ) = (13τ + 7)−13
12∏
s=0

K( 5
13

, s
13)

(τ),

12∏
s=0

K( 5
13

, s
13)

(γτ) = ζ2326 (13τ + 7)−13
12∏
s=0

K( 3
13

, s
13)

(τ),

12∏
s=0

K( 6
13

, s
13)

(γτ) = ζ1213 (13τ + 7)−13
12∏
s=0

K( 1
13

, s
13)

(τ),

and

μ1(γτ) = ζ1213μ4(τ), μ2(γτ) = ζ1526μ6(τ),

μ3(γτ) = ζ1926μ1(τ), μ4(γτ) = ζ526μ5(τ),

μ5(γτ) = ζ1013μ2(τ), μ6(γτ) = ζ2126μ3(τ).

Hence the actions of γ on r13(τ) and f(τ) are

r13(γτ) = μ1(γτ)μ5(γτ)μ6(γτ) = −μ2(τ)μ3(τ)μ4(τ) = − 1

r13(τ)
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and

f(γτ) =
1

r13(γτ)
− 3− r13(γτ) = −r13(τ)− 3 +

1

r13(τ)
= f(τ).

Hence f(τ) ∈ A0(Γ0(13)). Moreover, by the fact that the genus of Γ0(13) is zero, we have
A0(Γ0(13)) = C(f(τ)). Since the Fourier coefficients of f belong to Q, we get A0(Γ0(13))Q =
Q(f(τ)) = Q(1/r13(τ)− r13(τ)). �

Let d1 (respectively, dn) be the total degree of poles of f(τ) (respectively, f(nτ)). Let
Fn(X,Y ) be a polynomial such that

Fn(X,Y ) =
∑

0≤i≤dn
0≤j≤d1

Ci,jX
iY j ∈ Q[X,Y ]

and Fn(f(τ), f(nτ)) = 0. From Lemma 2.2, for any prime p �= 13, we can remove 4p + 2
coefficients of modular equations of level p.

Theorem 4.1. Let p be any prime p �= 13 and Fn(X,Y ) be the polynomial satisfying
Fn(f(τ), f(nτ)) = 0. Then

Fp(X,Y ) =
∑

0≤i,j≤p+1

Ci,jX
iY j ∈ Q[X,Y ]

and

(1) Cp+1,0 �= 0 and C0,p+1 �= 0.
(2) For j = 0, . . . p, C0,j = 0 and Cj,0 = 0.
(3) For j = 1, . . . p+ 1, Cp+1,j = 0 and Cj,p+1 = 0.

Proof. Note that SΓ0(13p) = {∞, 0, 1/p, 1/13} is the set of inequivalent cusps of Γ0(13p).
Let f1(τ) = f(τ) and f2(τ) = f(pτ). Since C(f1(τ), f2(τ)) = A0(Γ0(13n)), f1(τ) and f2(τ)
have poles at ∞, 1/13 and zeros at 0, 1/p with

ord∞f1(τ) = ord1/13f2(τ) = −1, and ord1/13f1(τ) = ord∞f2(τ) = −p.

Hence, we have Fp(X,Y ) =
∑

0≤i,j≤p+1Ci,jX
iY j . Additionally,

ord0f1(τ) = ord1/pf2(τ) = p and ord1/pf1(τ) = ord0f2(τ) = 1.

From Lemma 2.2, the fact that a = 0 and b = p+ 1 implies that both Cp+1,a = Cp+1,0 and
C0,b = C0,p+1 are nonzero. Moreover, Cp+1,j = 0 for j �= 0 and C0,j = 0 for j �= p+ 1.

On the other hand, let f1(τ) = f(pτ) and f2(τ) = f(τ). Assume that F ′
p(X,Y ) =∑

0≤i,j≤p+1C
′
i,jX

iY j is a polynomial satisfying F ′
p(f(pτ), f(τ)) = 0. Then C ′

i,j = Cj,i,

a = 0 and b = p + 1 by Lemma 2.2. By using Lemma 2.2, we get C ′
p+1,j = Cj,p+1 = 0 for

j = 1, . . . , p+ 1 and C ′
0,j = Cj,0 = 0 for j = 0, . . . p. �

We want to point out that the following proof of Theorem 1.2 presents a constructive
way of finding the modular equation of r13(τ).

Proof of Theorem 1.2. If C(f1(τ), f2(τ)) is the field of all modular functions on some
congruence subgroup for which f1(τ) and f2(τ) are nonconstants, then [C(f1(τ), f2(τ)) :
C(fi(τ))] is the total degree di of poles of fi(τ) for i = 1, 2. Therefore, there exists a
polynomial Φ(X,Y ) ∈ C[X,Y ] such that Φ(f1(τ), Y ) is a minimal polynomial of f2(τ) over
C(f1(τ)) with degree d1, and similarly so is Φ(X, f2(τ)) with degree d2. Let f1(τ) = f(τ) =
q−1

∏∞
m=1(1− qm)2(1− q13m)−2 and f2(τ) = f(nτ). Then by Lemma 2.2, for every positive

integer n, we can consider a polynomial Fn(X,Y ) ∈ Q[X,Y ] such that Fn(f(τ), f(nτ)) = 0
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with degX Fn(X,Y ) = d2 and degY Fn(X,Y ) = d1. We thus get the modular equation
Fn(X,Y ) of f(τ) for every positive integer level n. Since f(τ) = 1/r13(τ)− 3− r13(τ),

F̂n(X,Y ) := Xd2Y d1 × Fn

(
1

X
− 3−X,

1

Y
− 3− Y

)
is a polynomial with F̂n(r13(τ), r13(nτ)) = 0. After factorizing the polynomial F̂n(X,Y ),

one can choose exactly one irreducible factor Fn(X,Y ) of F̂n(X,Y ) satisfying Fn (r13(τ),
r13(nτ)) = 0. In fact, this Fn(X,Y ) is a modular equation of r13(τ) of level n for a positive
integer n. �

We have to calculate the modular equation of level 13 separately since Theorem 4.1 does
not cover the level 13 case. For a modular function fj(τ) of level N , let Sj,0 (respectively,
Sj,∞) be the subset of the set SΓ0(N) of inequivalent cusps of Γ0(N) satisfying ordsfj(τ) > 0
(respectively, ordsfj(τ) < 0) (as defined in Lemma 2.2). To find the modular equation of
level 13, the subsets Sj,0 and Sj,∞ play important roles. When the modular equation is of
level 13, the cusps of congruence subgroup Γ0(169) and the behaviors of f(τ) and f(13τ)
at the cusps are all different from the ones of Γ0(13p), f(τ) and f(pτ) as p �= 13.

Theorem 4.2 (A modular equation of level 13). We explicitly obtain the modular
equation F13(X,Y ) of r13(τ) with level 13 as given in Appendix B.

Proof. Let SΓ0(169) be the set of inequivalent cusps.

Let f1(τ) = f(τ) = q−1
∏∞

n=1(1− qn)2(1− q13n)−2 and f2(τ) = f(13τ) in Lemma 2.2.
Then we may write

SΓ0(169) = {∞, 0, 1/13, 2/13, . . . , 12/13} .
Here the useful subsets Sj,∞ and Sj,0 (j = 1, 2) of SΓ0(169) are

S1,∞ =

{
∞,

1

13
, . . . ,

12

13

}
, S1,0 = {0} and

S2,∞ = {∞} , S2,0 =

{
0,

1

13
, . . . ,

12

13

}
,

where

Sj,∞ :=
{
s ∈ SΓ0(169) : fj(τ) has a pole at s

}
and

Sj,0 :=
{
s ∈ SΓ0(169) : fj(τ) has a zero at s

}
.

Since ord∞f1(τ) = ordl/13f1(τ) = −1 (l = 1, . . . , 12) and ord∞f2(τ) = −13, the modular
equation of level 13 is

F13(X,Y ) =
∑

0,≤i,j≤13

Ci,jX
iY j .

Since

−
∑

s∈S1,∞∩S2,0

ordsf1(τ) = 12 and
∑

s∈S1,0∩S2,0

ordsf1(τ) = 13,

we have the following:

(1) C13,12 and C0,13 are nonzero.
(2) C13,j = 0 for all j = 0, . . . 11, 13.
(3) C0,j = 0 for all j = 0, . . . , 12.
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By switching the roles of f1 and f2, let f1(τ) = f(13τ) and f2(τ) = f(τ). Then

S1,∞ = {∞} , S1,0 =

{
0,

1

13
, . . . ,

12

13

}
S2,∞ =

{
∞,

1

13
, . . . ,

12

13

}
, and S2,0 = {0} .

A similar computation as above shows the following:

(1) C0,13 and C1,0 are nonzero.
(2) Cj,13 = 0 for j = 1, 2, . . . , 13.
(3) Cj,0 = 0 for j = 0, 2, . . . , 13.

Assume that C0,13 = 1. By substituting the q-expansion of f(τ) and f(13τ), we get the
modular equation F13(X,Y ) in Appendix A.

For obtaining F13(X,Y ), let

F̂13(X,Y ) = X13Y 13F13(1/X − 3−X, 1/Y − 3− Y ).

This polynomial has two irreducible factors F13(X,Y ) and F ′
13(X,Y ), where the lowest

term of F ′
13(X,Y ) is 1. Since F ′

13(r13(τ), r13(13τ)) = 1 + O(q), it cannot be zero. It thus
follows that F13(X,Y ) is the modular equation of r13(τ) with level 13. �

In Appendix A, the modular equations of f(τ) satisfy the congruence relation

(Xp − Y )(X − Y p) (mod p)

for p = 2, 3, 5, 7, 11 and 17. This property is called Kronecker’s congruence. We discuss
some properties of modular equations including the Kronecker’s congruence.

Consider Γ = Γ0(13). For any integer a with (a, 13) = 1, we choose σa ∈ Γ(1) so that
σa ≡ (

a−1 0
0 a

)
(mod 13) and σa ∈ Γ0(13). For example, we may take σa as

σ±1 = ±
(
1 0
0 1

)
, σ±2 = ±

(
85 13
13 2

)
, σ±3 = ±

(
113 26
13 3

)
,

σ±4 = ±
(
10 13
13 17

)
, σ±5 = ±

(
34 13
13 5

)
, σ±6 = ±

(−28 −13
13 6

)
.

For every integer n with (n, 13) = 1, one has

Γ

(
1 0
0 n

)
Γ =

⊔
a>0
a|n

⊔
0≤b<n

a

Γσa

(
a b
0 n

a

)

with disjoint union and |Γ\Γ ( 1 0
0 n ) Γ| = n

∏
p|n(1 + 1/p) by [10, Proposition 3.36].

Consider the polynomial

Ψn(X, τ) :=
∏

0<a|n

∏
0≤b<n/a

(a,b,n/a)=1

(X − (f ◦ αa,b)(τ))

with degree n
∏

p|n(1 + 1/p), where αa,b = σa

(
a b
0 n/a

)
.

The coefficients of Ψn(X, τ) are elementary symmetric functions of f ◦αa,b and invariant
under Γ. In other words, these are in A0(Γ) = C(f(τ)) and Ψn(X, τ) ∈ C(f(τ))[X].
Therefore, we may write Ψn(X, f(τ)) instead of Ψn(X, τ). By observing αn,0 = σn ( n 0

0 1 ), we
have (f ◦αn,0)(τ) = f(nτ) and Ψn(f(nτ), f(τ)) = 0. When f1(τ) = f(nτ) and f2(τ) = f(τ),
we define Sj,∞ to be the set of cusps which are poles of fj(τ). By Sj,0 we mean the set
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of cusps where fj(τ) has zero. From Lemma 2.2, we recall that a is a nonnegative integer
determined by the order ordsf1(τ) of f1(τ) at the cusp s in S1,∞ ∩ S2,0. If we multiply
Ψn(X, f(τ)) by a suitable power of f(τ), we have a polynomial Fn(X, f(τ)) ∈ C[X, f(τ)]
such that Fn(f(nτ), f(τ)) = 0. By Lemma 3.6 since S1,∞ ∩ S2,0 = φ, we may take a = 0.
We thus will regard Ψn(X, f(τ)) as a polynomial of X and f(τ) for proving the following
theorem.

Theorem 4.3. With the notation as above, for a positive integer n relatively prime to 13,
let Ψn(X,Y ) be a polynomial such that Ψn(f(τ), f(nτ)) = 0. Then we get the following
assertions:

(1) Ψn(X,Y ) ∈ Z[X,Y ] and degX Ψn(X,Y ) = degY Ψn(X,Y ) = n
∏

p|n(1 + 1/p).

(2) Ψn(X,Y ) is irreducible both as a polynomial in X over C(Y ) and as a polynomial
in Y over C(X).

(3) Ψn(X,Y ) = Ψn(Y,X).
(4) If n is not a square, Ψn(X,X) is a polynomial of degree > 1 whose leading coefficient

is ±1.
(5) (Kronecker’s congruence) Let p be an odd prime. Then

Ψp(X,Y ) ≡ (Xp − Y )(X − Y p) (mod pZ[X,Y ]).

Proof. We write Γ for Γ0(13). We note that f(τ) = q−1
∏∞

m=1(1− qm)2(1− q13m)−2 has a
Fourier expansion

f(τ) = q−1 +

∞∑
m=0

cmqm, where cm ∈ Z,

and let ψk be an automorphism of Q(ζn) over Q such as ψk(ζn) = ζkn for k relatively prime

to n. The action of
(

a b
0 n/a

)
on f is(

f ◦
(
a b
0 n/a

))
(τ) = f

(
aτ + b

n/a

)
= f

(
a2τ + ab

n

)
= ζ−ab

n q−
a2

n +
∞∑

m=0

cmζabmn q
a2m
n .

Then ψk induces an automorphism ψk of Q(ζn)((q
1/n)) over Q(ζn) :

ψk

(
f ◦

(
a b
0 n/a

)
(τ)

)
= ζ−abk

n q−
a2

n +
∞∑

m=0

cmζabkmm q
a2m
n .

Choosing 0 ≤ b′ < n/a such that b′ ≡ bk (mod n/a), we have ab′ ≡ abk (mod n) and

ψk (f ◦ αa,b) = ψk

(
f ◦ σa

(
a b
0 n/a

))
= ψk

(
f ◦

(
a b
0 n/a

))
= f ◦

(
a b′
0 n/a

)
= f ◦ σa

(
a b′
0 n/a

)
= f ◦ αa,b′ .

Hence

ψk(Ψn(X, f(τ))) = Ψn(X, f(τ))

and Ψn(X, f(τ)) ∈ Q((q1/n))[X]. Furthermore, we have Ψn(f(τ/n), f(τ)) = 0 and [C(f(τ/n),
f(τ)) : C(f(τ))] ≤ d since (f ◦ α1,0)(τ) = (f ◦ ( 1 0

0 n ))(τ) = f(τ/n) where d =
∏

p|n(1 + 1/p).
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For a, b, Γαa,b ⊂ Γ ( 1 0
0 n ) Γ, there exist γ, γ′ and γa,b in Γ such that

γ

(
1 0
0 n

)
γa,b = γ′αa,b,

i.e., ( 1 0
0 n ) γa,bα

−1
a,b ∈ Γ = Γ0(13).

We consider an embedding ξa,b of C(f(τ/n), f(τ)) to the field of all meromorphic functions
on H containing C(f(τ/n), f(τ)) over C(f(τ)) defined by

ξa,b(h) = h ◦ γa,b.
In fact, ξa,b(f) = f and

ξa,b (f(τ/n)) = ξa,b

(
f ◦

(
1 0
0 n

))
(τ)

=

(
f ◦

(
1 0
0 n

)
γa,b

)
(τ) = (f ◦ αa,b)(τ).

When αa,b �= αa′,b′ , we have f ◦ αa,b �= f ◦ αa′,b′ . This means that there exist distinct d
embeddings ξa,b of C(f(τ/n), f(τ)) over C(f(τ)) and[

C

(
f
( τ
n

)
, f(τ)

)
: C(f(τ))

]
= d.

Therefore, Ψn(X, f(τ)) is irreducible over C(f(τ)).

Let F (X,Y ) be the polynomial in Lemma 2.2. Let f1(τ) = f(τ) and f2(τ) = f(nτ),
and let d1 (respectively, dn) be the total degree of f(τ) (respectively, f(nτ)). Let a =
−∑

s∈S1,∞∩S2,0
ordsf(τ). Then

F (X,Y ) = Cdn,aX
n +

∑
0≤i<dn
0≤j≤d1

Ci,jX
iY j .

Since F (X, f(τ)) is the minimal polynomial of f(τ/n) over C(f(τ)) and F (f(τ/n), Y ) is a
minimal polynomial of f(τ) over C(f(τ/n)), we get

f(τ)aΨn(X, f(τ)) =
F (X, f(τ))

Cdn,a
.

In our case, a = 0, F (X,Y ) ∈ Z[X,Y ], and Ψn(X,Y ) ∈ Z[X,Y ]; hence, (1) and (2) follow.

(3) We observe that (f◦αn,0)(τ) = f(nτ). Since Ψn(f(nτ), f(τ)) = 0, Ψn(f(τ), f(τ/n)) =
0 and f(τ/n) is a root of Ψn(f(τ), X) = 0. From that Ψn(X, f(τ)) ∈ Z[X, f(τ)] and
Ψn(X, f(τ)) is irreducible, there is a polynomial g(X, f(τ)) such that

Ψn(f(τ), X) = g(X, f(τ))Ψn(X, f(τ)).

By changing the places of variables and multiplying g(X, f(τ)), we get

g(X, f(τ))Ψn(X, f(τ)) = g(X, f(τ))g(f(τ), X)Ψn(f(τ), X),

which is just Ψn(f(τ), X); so, g(X,Y ) should be ±1.
Suppose that g = −1. Then Ψn(f(τ), X) = −Ψn(X, f(τ)) and by substituting f(τ) for

X, we have Ψn(f(τ), f(τ)) = −Ψn(f(τ), f(τ)); so, f(τ) is a root of Ψn(X, f(τ)) = 0 and
the polynomial X − f(τ) divides Ψn(X, f(τ)). However, Ψn(X, f(τ)) is irreducible over
C(f(τ)), so we get a contradiction. Therefore, g = 1 and Ψn(f(τ), X) = Ψn(X, f(τ)).



THE LEVEL 13 ANALOGUE ROGERS-RAMANUJAN CONTINUED FRACTION 15

(4) Consider that

(4.1) f(τ)− (f ◦ αa,b)(τ) = q−1 − ζ−ab
n q−

a2

n +O(q
1
n ).

If n is not a square, the coefficient of (4.1) is a unit; hence, Ψn(f(τ), f(τ)) is a unit.
Therefore, Ψn(X,X) is a polynomial with constant term ±1.

(5) Let p be an odd prime with p �= 13. For g(τ), h(τ) ∈ Z[ζp]((q
1/p)), we write

g(τ) ≡ h(τ) (mod α)

if g(τ)− h(τ) ∈ αZ[ζp]((q
1
n )).

Consider the following for f(τ) = q−1 +
∑∞

m=0 cmqm:

(f ◦ α1,b)(τ) = ζ−b
p q

− 1
p +

∞∑
m=0

cmζbmp q
m
p

≡ q
− 1

p +
∞∑

m=0

cmq
m
p (mod 1− ζp)

= (f ◦ α1,0)(τ),

(f ◦ αp,0)(τ) = q−p +
∞∑

m=0

cmqpm

≡ q−p +

∞∑
m=0

cpmqpm ≡ f(τ)p (mod p),

((f ◦ α1,0)(τ))
p =

(
q
− 1

p +
∞∑

m=0

cf (m)q
m
p

)p

≡ q−1 +

∞∑
m=0

cf (m)qm (mod 1− ζp)

= f(τ).

We thus get

Ψp(X, f(τ)) =

⎡⎣ ∏
0≤b<p

(X − (f ◦ α1,b)(τ))

⎤⎦ (X − (f ◦ αp,0)(τ))

≡ (X − (f ◦ α1,0)(τ))
p(X − f(τ)p) (mod 1− ζp)

≡ (Xp − (f ◦ α1,0)(τ)
p)(X − f(τ)p) (mod 1− ζp)

≡ (Xp − f(τ))(X − f(τ)p) (mod 1− ζp)

and ∑
ν

ψν(f(τ))X
ν := Ψp(X, f(τ))− (Xp − f(τ))(X − f(τ)p) ∈ (1− ζp) · Z[X, f(τ)].

By the fact that
Ψp(X,Y )− (Xp − Y )(X − Y p) ∈ Z[X,Y ],

ψν(f(τ)) belongs to Z and (1 − ζp) divides ψν(f(τ)) in Z[ζp]((q
1/n)). Hence ψν(f(τ)) ∈

pZ[f(τ)] and (5) is proved. �
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To prove our last theorem, we need to find criteria for being modular units. Let j(τ) be
the classical elliptic modular function. By definition a modular unit over Z is a modular
function h(τ) of some level N which is rational over Q(ζN ) such that h(τ) and 1/h(τ) are
integral over Z[j(τ)].

Lemma 4.4. Let h(τ) be a modular function of some level N which is rational over Q(ζN )
for which h(τ) has neither zeros nor poles on H. If for every γ ∈ SL2(Z) the Fourier
expansion of h ◦ γ has algebraic integer coefficients and the coefficient of the term of lowest
degree is a unit, then h(τ) is a modular unit over Z.

Proof. One can refer to [8, Chapter 2, Lemma 2.1], which is proved by the theory of Shimura
reciprocity law [10]. �

Let h(τ) be a modular unit over Z and K be an imaginary quadratic field. Since it is
well known that j(τ) is an algebraic integer for every τ ∈ K − Q, we can derive that for
such τ , h(τ) is an algebraic integer which is a unit. By observing this fact and the following
elementary lemma, we derive the property of r13(τ).

Lemma 4.5. Let p be a prime and r, s ∈ Z such that (p, rs) = 1. Then

(1− ζrpn)(1− ζspn)
−1

is a unit of Z[ζpn ].

Proof. If s ∈ (Z/pnZ)×, then r ≡ st (mod pn) for some t ∈ Z>0. So

1− ζrpn

1− ζspn
=

1− ζstpn

1− ζspn
= 1 + ζspn + · · ·+ ζ

s(t−1)
pn ∈ Z[ζpn ].

Similarly, (1− ζspn)(1− ζrpn)
−1 ∈ Z[ζpn ]. �

Proof of Theorem 1.3. It is enough to prove that r13(τ) is a modular unit over Z. Let
γ =

(
a b
c d

) ∈ SL2(Z). By (3.1) and Proposition 3.3, we get

r13(τ) = ζ213

12∏
j=0

K( 1
13

, j
13)

(τ)K( 3
13

, j
13)

(τ)K( 4
13

, j
13)

(τ)

K( 2
13

, j
13)

(τ)K( 5
13

, j
13)

(τ)K( 6
13

, j
13)

(τ)
.

By (K1) in Section 2, the action γ on r13(τ) is

r13(γτ) = ζ213

12∏
j=0

K(a+cj
13

, b+dj
13 )(τ)K( 3a+cj

13
, 3b+dj

13 )(τ)K( 4a+cj
13

, 4b+dj
13 )(τ)

K( 2a+cj
13

, 2b+dj
13 )(τ)K( 5a+cj

13
, 5b+dj

13 )(τ)K( 6a+cj
13

, 6b+dj
13 )(τ)

.

If we replace the Klein forms by the q-products in (K4) and expand the products as a series,
then the series is the Fourier expansion of r13(γτ). Since we want to prove that r13(γτ) has
algebraic integer Fourier coefficients and the coefficient of the lowest degree term is a unit,
we may assume that

0 ≤ (la+ cj)/13 < 1, for l = 1, . . . , 6

by (K2). If we assume these, then the only term we should consider in (K4) is

1− qz = 1− ζ lb+dj
13 q

la+cj
13 .

First, assume that c is a multiple of 13. Then a is relatively prime to 13 and la+cj ≡ la �≡ 0
(mod 13); thus, the exponent (la+ cj)/13 of q is not an integer for any 1 ≤ l ≤ 6 and 1− qz
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cannot be complex numbers, namely it has algebraic integer coefficients with the coefficient
of the lowest degree term 1, and the series expansion of r13(γτ) has the desired properties.

Now assume that for given c ∈ (Z/13Z)×, there exist unique j1, . . . , j6 ∈ {0, · · · , 12} such
that

la+ c · jl ≡ 0 (mod 13), for each l = 1, . . . , 6.

Hence, the coefficient of the lowest degree term of r13(γτ) is

(4.2)
(1− ζb+d·j1

13 )(1− ζ3b+d·j3
13 )(1− ζ4b+d·j4

13 )

(1− ζ2b+d·j2
13 )(1− ζ5b+d·j5

13 )(1− ζ6b+d·j6
13 )

up to a unit. Since(
l

13
,
jl
13

)
=

(
la+ c · jl

13
,
lb+ d · jl

13

)(
d −b
−c a

)
=

(
la+ c · jl

13
d− lb+ d · jl

13
c, ∗

)
,

l = (la+ c · jl)d− (lb+ d · jl)c ≡ −(lb+ d · jl)c (mod 13). Hence for each l �≡ 0 (mod 13),

ζ lb+d·jl
13 �= 1 and (4.2) is a unit by Lemma 4.5. �
Corollary 4.6. Let f(τ) = q−1

∏∞
n=1(1−qn)2(1−q13n)−2 and K be an imaginary quadratic

field. Then f(τ) is an algebraic integer for every τ ∈ K −Q.

Proof. By Theorem 1.3, for any τ ∈ K − Q, 1/r13(τ) and r13(τ) are algebraic integers.
Hence f(τ) = 1/r13(τ)− 3− r13(τ) is also an algebraic integer. �

Appendix A. Modular equations Fp(X,Y ) of f(τ) of levels p = 2, 3, 5, 7, 11, 13
and 17

F2(X,Y ) = (X2 − Y )(X − Y 2)− 4XY (X + Y + 3),

F3(X,Y ) = (X3 − Y )(X − Y 3)− 3XY [(2XY + 26)(X + Y ) + 5(X2 + Y 2) + 11XY + 56],

F5(X,Y ) = (X5 − Y )(X − Y 5)

−5XY [(2X3Y 3 + 106X2Y 2 + 1378XY + 4394)(X + Y ) + (9X2Y 2 + 250XY + 1521)(X2 + Y 2)

+(20XY + 260)(X3 + Y 3) + 20(X4 + Y 4) + 22X3Y 3 + 548X2Y 2 + 3718XY + 5712],

F7(X,Y ) = (X7 − Y )(X − Y 7)

−7XY [(2X5Y 5 + 210X4Y 4 + 6778X3Y 3 + 88114X2Y 2 + 461370XY + 742586)(X + Y )

+(13X4Y 4 + 848X3Y 3 + 17764X2Y 2 + 143312XY + 371293)(X2 + Y 2)

+(48X3Y 3 + 2058X2Y 2 + 26754XY + 105456)(X3 + Y 3) + (105X2Y 2 + 2807XY + 17745)

(X4 + Y 4) + (126XY + 1638)(X5 + Y 5) + 65(X6 + Y 6) + 30X5Y 5 + 1566X4Y 4 + 31400X3Y 3

+264654X2Y 2 + 856830XY + 689544],

F11(X,Y ) = (X11 − Y )(X − Y 11)

−11XY [(2X9Y 9 + 462X8Y 8 + 32328X7Y 7 + 1079056X6Y 6 + 21825550X5Y 5 + 283732150X4Y 4

+2370686032X3Y 3 + 12003160104X2Y 2 + 28989814854XY + 21208998746)(X + Y ) + (21X8Y 8

+3004X7Y 7 + 148381X6Y 6 + 3871222X5Y 5 + 63156789X4Y 4 + 654236518X3Y 3
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+4237909741X2Y 2 + 14499734236XY + 17130345141)(X2 + Y 2) + (136X7Y 7 + 13314X6Y 6

+494114X5Y 5 + 10358244X4Y 4 + 134657172X3Y 3 + 1085568458X2Y 2 + 4943395002XY

+8533798312)(X3 + Y 3) + (595X6Y 6 + 41857X5Y 5 + 1212811X4Y 4 + 20350590X3Y 3

+204965059X2Y 2 + 1195477777XY + 2871951355)(X4 + Y 4) + (1818X5Y 5 + 94446X4Y 4

+2169148X3Y 3 + 28198924X2Y 2 + 207497862XY + 675010674)(X5 + Y 5) + (3883X4Y 4

+151074X3Y 3 + 2706539X2Y 2 + 25531506XY + 110902363)(X6 + Y 6) + (5632X3Y 3

+164326X2Y 2 + 2136238XY + 12373504)(X7 + Y 7) + (5175X2Y 2 + 109113XY + 874575)(X8

+Y 8) + (2590XY + 33670)(X9 + Y 9) + 481(X10 + Y 10) + 44X9Y 9 + 4883X8Y 8 + 222110X7Y 7

+5629459X6Y 6 + 91150852X5Y 5 + 951378571X4Y 4 + 6343683710X3Y 3 + 23569308347X2Y 2

+35892151724XY + 12532590168],

F13(X,Y ) = Y 13 −X13Y 12

−13X[(2Y 12 + Y 11)X11 + (25Y 12 + 26Y 11 + 13Y 10)X10 + (196Y 12 + 325Y 11 + 338Y 10

+169Y 9)X9 + (1064Y 12 + 2548Y 11 + 4225Y 10 + 4394Y 9 + 2197Y 8)X8 + (4180Y 12 + 13832Y 11

+33124Y 10 + 54925Y 9 + 57122Y 8 + 28561Y 7)X7 + (12086Y 12 + 54340Y 11 + 179816Y 10

+430612Y 9 + 714025Y 8 + 742586Y 7 + 371293Y 6)X6 + (25660Y 12 + 157118Y 11 + 706420Y 10

+2337608Y 9 + 5597956Y 8 + 9282325Y 7 + 9653618Y 6 + 4826809Y 5)X5 + (39182Y 12 + 333580Y 11

+2042534Y 10 + 9183460Y 9 + 30388904Y 8 + 72773428Y 7 + 120670225Y 6 + 125497034Y 5

+62748517Y 4)X4 + (41140Y 12 + 509366Y 11 + 4336540Y 10 + 26552942Y 9 + 119384980Y 8

+395055752Y 7 + 946054564Y 6 + 1568712925Y 5 + 1631461442Y 4 + 815730721Y 3)X3 + (27272Y 12

+534820Y 11 + 6621758Y 10 + 56375020Y 9 + 345188246Y 8 + 1552004740Y 7 + 5135724776Y 6

+12298709332Y 5 + 20393268025Y 4 + 21208998746Y 3 + 10604499373Y 2)X2 + (9604Y 12

+354536Y 11 + 6952660Y 10 + 86082854Y 9 + 732875260Y 8 + 4487447198Y 7 + 20176061620Y 6

+66764422088Y 5 + 159883221316Y 4 + 265112484325Y 3 + 275716983698Y 2 + 137858491849Y )X

+(1165Y 12 + 124852Y 11 + 4608968Y 10 + 90384580Y 9 + 1119077102Y 8 + 9527378380Y 7

+58336813574Y 6 + 262288801060Y 5 + 867937487144Y 4 + 2078481877108Y 3 + 3446462296225Y 2

+3584320788074Y + 1792160394037)],

F17(X,Y ) = (X17 − Y )(X − Y 17)

−17XY [(2X15Y 15 + 1006X14Y 14 + 149368X13Y 13 + 9449296X12Y 12 + 277283808X11Y 11

+2807841744X10Y 10 − 57040799630X9Y 9 − 2270242197246X8Y 8 − 29513148564198X7Y 7

−125318636787110X6Y 6 + 1042531984654992X5Y 5 + 17399147740112736X4Y 4

+100205053507291408X3Y 3 + 267691413736518616X2Y 2 + 304692357231806518XY

+102371786028181514)(X + Y ) + (33X14Y 14 + 10157X13Y 13 + 1036338X12Y 12

+46468884X11Y 11 + 937380339X10Y 10 + 2995082193X9Y 9 − 267189542724X8Y 8

−5871087945322X7Y 7 − 45155032720356X6Y 6 + 85542542514273X5Y 5 + 4524555856708251X4Y 4

+37906096249385364X3Y 3 + 142867993725808962X2Y 2 + 236638650589039517XY

+129933420728076537)(X2 + Y 2) + (348X13Y 13 + 72900X12Y 12 + 5330940X11Y 11

+172095882X10Y 10 + 2429452302X9Y 9 − 443129954X8Y 8 − 548090669746X7Y 7
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−7125178706698X6Y 6 − 973556508938X5Y 5 + 902038633566486X4Y 4 + 10798761377306994X3Y 3

+56531949887500620X2Y 2 + 130648492725297300XY + 105400537094104044)(X3 + Y 3)

+(2610X12Y 12 + 390234X11Y 11 + 20741415X10Y 10 + 491255172X9Y 9 + 5806735314X8Y 8

+33465558288X7Y 7 + 131762476550X6Y 6 + 5655679350672X5Y 5 + 165846167303154X4Y 4

+2371194885506148X3Y 3 + 16919409412510215X2Y 2 + 53797070708202666XY

+60808002169675410)(X4 + Y 4) + (14688X11Y 11 + 1593248X10Y 10 + 61339470X9Y 9

+1140305022X8Y 8 + 17187561070X7Y 7 + 285078068466X6Y 6 + 3706014890058X5Y 5

+37761071670790X4Y 4 + 423387272533446X3Y 3 + 3848960776065990X2Y 2 + 16895597417033504XY

+26323251867615456)(X5 + Y 5) + (63848X10Y 10 + 4988615X9Y 9 + 136925586X8Y 8

+2406980596X7Y 7 + 55738342810X6Y 6 + 987969825467X5Y 5 + 9419779934890X4Y 4

+68745772802356X3Y 3 + 660913650835074X2Y 2 + 4069366510741415XY + 8801988987574952)

(X6 + Y 6) + (217580X9Y 9 + 11851494X8Y 8 + 225876162X7Y 7 + 5041477534X6Y 6

+138821927106X5Y 5 + 1804685052378X4Y 4 + 11076126142198X3Y 3 + 83866237817466X2Y 2

+743663672734398XY + 2307326973577340)(X7 + Y 7) + (584079X8Y 8 + 20627250X7Y 7

+260091576X6Y 6 + 9359618100X5Y 5 + 213828174988X4Y 4 + 1581775458900X3Y 3

+7428475502136X2Y 2 + 99563795945250XY + 476451183790959)(X8 + Y 8) + (1230630X7Y 7

+23904234X6Y 6 + 158815970X5Y 5 + 11625462802X4Y 4 + 151131016426X3Y 3 + 348918686090X2Y 2

+8875474754562XY + 77220207475710)(X9 + Y 9) + (2010261X6Y 6 + 12158085X5Y 5

−118403154X4Y 4 + 4866872225X3Y 3 − 20010133026X2Y 2 + 347247065685XY + 9703145887149)

(X10 + Y 10) + (2488512X5Y 5 − 12961106X4Y 4 − 503723122X3Y 3 − 6548400586X2Y 2

−28475549882XY + 923967086016)(X11 + Y 11) + (2248129X4Y 4 − 32004376X3Y 3 − 684731010X2Y 2

−5408739544XY + 64208812369)(X12 + Y 12) + (1393390X3Y 3 − 27203110X2Y 2 − 353640430XY

+3061277830)(X13 + Y 13) + (532563X2Y 2 − 8091869XY + 90003147)(X14 + Y 14) + (101964XY

+1325532(X15 + Y 15) + 5802(X16 + Y 16) + 64X15Y 15 + 15271X14Y 14 + 1414170X13Y 13

+60227704X12Y 12 + 1122003630X11Y 11 − 1373219807X10Y 10 − 511693728152X9Y 9

−10467989087570X8Y 8 − 86476240057688X7Y 7 − 39220530907727X6Y 6 + 5415697219316670X5Y 5

+49129588408094584X4Y 4 + 194955343418100330X3Y 3 + 355785057905407351X2Y 2

+251992088684754496XY + 39142153481363520].

Appendix B. Modular equations Fp(X,Y ) of r13(τ) of levels p = 2, 3, 5, 7, 11, 13
and 17

F2(X,Y ) = X3Y 2 +X2 +XY 3 − Y + 2XY (XY −X + Y + 1)

F3(X,Y ) = (X3 − Y )(X − Y 3)− 3XY [(XY − 1)(X + Y ) + (X2 + Y 2) +XY ],

F5(X,Y ) = (XY 5 + 1)(X5 − Y )

+5XY [X3Y 3(X + 2Y )− 3X2Y 2(X2 − Y 2) +XY (2X3 + Y 3)− (X4 + Y 4)− 9X2Y 2(X − Y )

+6XY (X2 + Y 2)− (X3 + 2Y 3)− 9XY (X − Y ) + 3(X2 − Y 2) +X4Y 4 + 6X3Y 3 + 6XY

−2X − Y + 1],



20 YOONJIN LEE1 AND YOON KYUNG PARK2,∗

F7(X,Y ) = (XY 7 + 1)(X7 − Y )

−7XY [27X2Y 2(XY − 1)(X + Y )−X5Y 5(X + 3Y ) + (3X + Y ) +X4Y 4(20X − 7Y )

+XY (7X − 20Y )−XY (22X2Y 2 + 47XY + 22)(X2 + Y 2) + 3X4Y 4(X2 − 2Y 2)

−3(2X2 − Y 2) +XY (20X3 − 7Y 3) +X2Y 2(7X3 − 20Y 3)− 7(X3Y 3 − 1)(X3 + Y 3)

−4XY (X4 + Y 4)− 3(X4 − 2Y 4) + 3X2Y 2(2X4 − Y 4) + (X5 + 3Y 5)−XY (3X5 + Y 5)

+(X6 + Y 6)−X6Y 6 − 4X5Y 5 + 47X4Y 4 + 56X3Y 3 + 47X2Y 2 − 4XY − 1],

F11(X,Y ) = (XY 11 + 1)(X11 − Y )

+11XY [2470(X5Y 5 −X4Y 4)(X + Y )− 6XY (4X − Y )− 6X8Y 8(X − 4Y )−X2Y 2(79X

−147Y )−X7Y 7(147X − 79Y ) + 3X6Y 6(691X + 1439Y )− 3X3Y 3(1439X + 691Y ) + 2X3Y 3

(2717X2Y 2 − 4187XY + 2717)(X2 + Y 2) + 2XY (52X2 + 7Y 2) + 2X7Y 7(7X2 + 52Y 2)

+2(8X2 − Y 2) + 2X2Y 2(481X2 + 284Y 2)− 2X6Y 6(284X2 − 481Y 2) + 2070X2Y 2(X3Y 3

−1)(X3 + Y 3)− 3X4Y 4(1439X3 + 691Y 3) + 3X3Y 3(691X3 + 1439Y 3)− 2(18X3 + 5Y 3)

+2X7Y 7(5X3 + 18Y 3)−X3Y 3(307X3 − 267Y 3)−XY (267X3 − 307Y 3) + 2XY (233X4Y 4

+235X3Y 3 + 233)(X4 + Y 4) + 8(7X4 − 5Y 4)− 8X6Y 6(5X4 − 7Y 4)− 2X4Y 4(481X4

−284Y 4) + 2X2Y 2(284X4 − 481X4) + 60(X5Y 5 − 1)(X5 + Y 5) +X2Y 2(147X5 − 79Y 5)

+X3Y 3(79X5 − 147Y 5)−XY (307X5 − 267Y 5)−X4Y 4(267X5 − 307Y 5) + 10X2Y 2(X6

+Y 6) + 2X3Y 3(52X6 + 7Y 6) + 2XY (7X6 + 52Y 6)− 8X4Y 4(7X6 − 5Y 6) + 8(5X6 − 7Y 6)

+2X3Y 3(18X7 + 5Y 7)− 2(5X7 + 18Y 7)− 6X2Y 2(4X7 − Y 7)− 6XY (X7 − 4Y 7) + 2XY

(X8 + Y 8)− 2X2Y 2(8X8 − Y 8) + 2(X8 − 8Y 8)− (X10 + Y 10) +X10Y 10 + 5X9Y 10 + 2X9Y 9

−10X8Y 8 + 470X7Y 7 + 8374X6Y 6 + 5X10Y − 9592X5Y 5 − 5Y 9 + 8374X4Y 4 + 470X3Y 3

−10X2Y 2 + 2XY − 5X + 1],

F13(X,Y ) =

(Y 12 + 18Y 11 + 129Y 10 + 450Y 9 + 690Y 8 + 18Y 7 − 911Y 6 − 18Y 5 + 690Y 4 − 450Y 3 + 129Y 2

−18Y + 1)X13 + (13Y 12 + 221Y 11 + 1495Y 10 + 4940Y 9 + 7345Y 8 + 1079Y 7 − 7267Y 6

−1040Y 5 + 4355Y 4 − 2015Y 3 + 377Y 2 − 26Y )X12 + (78Y 12 + 1183Y 11 + 7163Y 10 + 21541Y 9

+30940Y 8 + 10075Y 7 − 21099Y 6 − 9841Y 5 + 13000Y 4 − 3991Y 3 + 455Y 2 − 13Y )X11

+(299Y 12 + 3731Y 11 + 18837Y 10 + 50245Y 9 + 74126Y 8 + 41548Y 7 − 34307Y 6 − 25610Y 5

+21411Y 4 − 6292Y 3 + 1066Y 2 − 91Y )X10 + (819Y 12 + 7553Y 11 + 29900Y 10 + 77181Y 9

+134303Y 8 + 105092Y 7 + 2249Y 6 − 22529Y 5 + 12012Y 4 − 897Y 3 − 2847Y 2 + 676Y )X9

+(1638Y 12 + 9230Y 11 + 29458Y 10 + 91260Y 9 + 169312Y 8 + 222261Y 7 + 181649Y 6

+45617Y 5 + 35594Y 4 − 39Y 3 − 1053Y 2 − 1729Y )X8 + (2405Y 12 + 4134Y 11 + 31707Y 10

+42328Y 9 + 138658Y 8 + 191854Y 7 + 260013Y 6 + 201695Y 5 + 58539Y 4 + 47060Y 3 + 4186Y 2

+2535Y )X7 + (2535Y 12 − 4186Y 11 + 47060Y 10 − 58539Y 9 + 201695Y 8 − 260013Y 7
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+191854Y 6 − 138658Y 5 + 42328Y 4 − 31707Y 3 + 4134Y 2 − 2405Y )X6 + (1729Y 12

−1053Y 11 + 39Y 10 + 35594Y 9 − 45617Y 8 + 181649Y 7 − 222261Y 6 + 169312Y 5

−91260Y 4 + 29458Y 3 − 9230Y 2 + 1638Y )X5 + (676Y 12 + 2847Y 11 − 897Y 10 − 12012Y 9

−22529Y 8 − 2249Y 7 + 105092Y 6 − 134303Y 5 + 77181Y 4 − 29900Y 3 + 7553Y 2 − 819Y )X4

+(91Y 12 + 1066Y 11 + 6292Y 10 + 21411Y 9 + 25610Y 8 − 34307Y 7 − 41548Y 6 + 74126Y 5

−50245Y 4 + 18837Y 3 − 3731Y 2 + 299Y )X3 − (13Y 12 + 455Y 11 + 3991Y 10 + 13000Y 9

+9841Y 8 − 21099Y 7 − 10075Y 6 + 30940Y 5 − 21541Y 4 + 7163Y 3 − 1183Y 2 + 78Y )X2

+(26Y 12 + 377Y 11 + 2015Y 10 + 4355Y 9 + 1040Y 8 − 7267Y 7 − 1079Y 6 + 7345Y 5

−4940Y 4 + 1495Y 3 − 221Y 2 + 13Y )X − Y 13 − 18Y 12 − 129Y 11 − 450Y 10 − 690Y 9

−18Y 8 + 911Y 7 + 18Y 6 − 690Y 5 + 450Y 4 − 129Y 3 + 18Y 2 − Y,

F17(X,Y ) = (X17 − Y )(X − Y 17)

−17XY [(X15Y 15 + 162X14Y 14 + 7565X13Y 13 + 130796X12Y 12 + 1108735X11Y 11

+4690617X10Y 10 + 5573662X9Y 9 + 4972452X8Y 8 − 4972452X7Y 7 − 5573662X6Y 6

−4690617X5Y 5 − 1108735X4Y 4 − 130796X3Y 3 − 7565X2Y 2 − 162XY − 1)(X + Y )

+(802X13Y 13 + 21656X12Y 12 + 177732X11Y 11 + 444265X10Y 10 − 587823X9Y 9

−3035548X8Y 8 − 5449182X7Y 7 − 3035548X6Y 6 − 587823X5Y 5 + 444265X4Y 4

+177732X3Y 3 + 21656X2Y 2 + 802XY + 8)(X2 + Y 2) + (41X13Y 13 + 2572X12Y 12

+31049X11Y 11 − 112484X10Y 10 − 1815352X9Y 9 − 2938240X8Y 8 − 1946882X7Y 7

+1946882X6Y 6 + 2938240X5Y 5 + 1815352X4Y 4 + 112484X3Y 3 − 31049X2Y 2 − 2572XY

−41)(X3 + Y 3) + (152X12Y 12 + 5702X11Y 11 + 3313X10Y 10 − 671569X9Y 9 − 2010796X8Y 8

−394118X7Y 7 − 1609356X6Y 6 − 394118X5Y 5 − 2010796X4Y 4 − 671569X3Y 3 + 3313X2Y 2

+5702XY + 152)(X4 + Y 4) + (429X11Y 11 + 8879X10Y 10 − 63934X9Y 9 − 787172X8Y 8

−329602X7Y 7 − 1645574X6Y 6 + 1645574X5Y 5 + 329602X4Y 4 + 787172X3Y 3

+63934X2Y 2 − 8879XY − 429)(X5 + Y 5) + (943X10Y 10 + 9625X9Y 9 − 104188X8Y 8

−246330X7Y 7 + 197325X6Y 6 + 1147150X5Y 5 + 197325X4Y 4 − 246330X3Y 3 − 104188X2Y 2

+9625XY + 943)(X6 + Y 6) + (1628X9Y 9 + 8736X8Y 8 − 34032X7Y 7 + 333791X6Y 6

−107541X5Y 5 + 107541X4Y 4 − 333791X3Y 3 + 34032X2Y 2 − 8736XY − 1628)(X7 + Y 7)

+(2188X8Y 8 + 11038X7Y 7 + 86419X6Y 6 − 69205X5Y 5 + 352004X4Y 4 − 69205X3Y 3

+86419X2Y 2 + 11038XY + 2188)(X8 + Y 8) + (2236X7Y 7 + 14714X6Y 6 + 22005X5Y 5

+93983X4Y 4 − 93983X3Y 3 − 22005X2Y 2 − 14714XY − 2236)(X9 + Y 9) + (1666X6Y 6

+8178X5Y 5 + 1029X4Y 4 − 658X3Y 3 + 1029X2Y 2 + 8178XY + 1666)(X10 + Y 10)

+(822X5Y 5 + 990X4Y 4 + 7728X3Y 3 − 7728X2Y 2 − 990XY − 822)(X11 + Y 11)

+(234X4Y 4 + 48X3Y 3 − 2948X2Y 2 + 48XY + 234)(X12 + Y 12) + (36X3Y 3 + 180X2Y 2

−180XY − 36)(X13 + Y 13)− 213XY (X14 + Y 14)− 6(X16 + Y 16) + 19X15Y 15 + 1491X14Y 14

+41816X13Y 13 + 530775X12Y 12 + 3722685X11Y 11 + 10393859X10Y 10 + 10751728X9Y 9
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+14168096X8Y 8 + 10751728X7Y 7 + 10393859X6Y 6 + 3722685X5Y 5 + 530775X4Y 4

+41816X3Y 3 + 1491X2Y 2 + 19XY ].
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J. Number Theory 129 (2009), 922–948.
5. S. Cooper and D. Ye, Explicit evaluations of a level 13 analogue of the Rogers-Ramanujan continued

fraction, J. Number Theory 139 (2014) 91-111.
6. A. Gee and M. Honsbeek, Singular values of the Rogers-Ramanujan continued fraction, Ramanujan

J. 11 (2006), 267–284.
7. N. Ishida and N. Ishii, The equations for modular function fields of principal congruence subgroups of

prime level, Manuscripta Math. 90 (1996), 271–285.
8. D. Kubert and S. Lang, Modular Units, Springer-Verlag, 1981.
9. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc. 25

(1894) 318-343.
10. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures,
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