期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:160 |
Visual properties of generalized Kloosterman sums | |
Article | |
Burkhardt, Paula2  Chan, Alice Zhuo-Yu1  Currier, Gabriel2  Garcia, Stephan Ramon2  Luca, Florian3  Suh, Hong2  | |
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA | |
[2] Pomona Coll, Dept Math, Claremont, CA 91711 USA | |
[3] Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South Africa | |
关键词: Kloosterman sum; Gauss sum; Salie sum; Supercharacter; Hypocycloid; Uniform distribution; Equidistribution; Lucas number; Lucas prime; | |
DOI : 10.1016/j.jnt.2015.08.019 | |
来源: Elsevier | |
【 摘 要 】
For a positive integer m and a subgroup Lambda of the unit group (Z/mZ)(x), the corresponding generalized Kloosterrnan sum is the function K(a, b, m, Lambda) = Sigma(u is an element of Lambda) e(au+bu(-1)/m) for a, b is an element of Z/mZ. Unlike classical Kloosterman sums, which are real valued, generalized Kloosterman sums display a surprising array of visual features when their values are plotted in the complex plane. In a variety of instances, we identify the precise number-theoretic conditions that give rise to particular phenomena. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2015_08_019.pdf | 4561KB | download |