期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:144
Supercharacters, exponential sums, and the uncertainty principle
Article
Brumbaugh, J. L.3  Bulkow, Madeleine1  Fleming, Patrick S.2  German, Luis Alberto Garcia3  Garcia, Stephan Ramon3  Michal, Matt4  Turner, Andrew P.5  Suh, Hong3 
[1] Scripps Coll, Dept Math, Claremont, CA 91711 USA
[2] South Dakota Sch Mines & Technol, Math & Comp Sci Dept, Rapid City, SD 57701 USA
[3] Pomona Coll, Dept Math, Claremont, CA 91711 USA
[4] Inst Math Sci, Claremont, CA 91711 USA
[5] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
关键词: Supercharacter;    Conjugacy class;    Superclass;    Circulant matrix;    Discrete Fourier transform;    DFT;    Discrete cosine transform;    DCT;    Fourier transform;    Gauss sum;    Gaussian period;    Ramanujan sum;    Heilbronn sum;    Kloosterman sum;    Symmetric group;    Uncertainty principle;   
DOI  :  10.1016/j.jnt.2014.04.019
来源: Elsevier
PDF
【 摘 要 】

The theory of supercharacters, which generalizes classical character theory, was recently introduced by P. Diaconis and I.M. Isaacs, building upon earlier work of C. Andre. We study supercharacter theories on (Z/nZ)(d) induced by the actions of certain matrix groups, demonstrating that a variety of exponential sums of interest in number theory (e.g., Gauss, Ramanujan, Heilbronn, and Kloosterman sums) arise in this manner. We develop a generalization of the discrete Fourier transform, in which supercharacters play the role of the Fourier exponential basis. We provide a corresponding uncertainty principle and compute the associated constants in several cases. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2014_04_019.pdf 810KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次