期刊论文详细信息
| JOURNAL OF NUMBER THEORY | 卷:210 |
| Hilbert modularity of some double octic Calabi-Yau threefolds | |
| Article | |
| Cynk, Slawomir1  Schuett, Matthias2,3  van Straten, Duco4  | |
| [1] Jagiellonian Univ, Inst Math, Ul Lojasiewicza 6, PL-30348 Krakow, Poland | |
| [2] Leibniz Univ Hannover, Inst Algebra Geometr, Welfengarten 1, D-30167 Hannover, Germany | |
| [3] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appelstr 2, D-30167 Hannover, Germany | |
| [4] Johannes Gutenberg Univ Mainz, Inst Math, Phys Math & Informat FB 08, Staudingerweg 9, D-55128 Mainz, Germany | |
| 关键词: Calabi-Yau threefold; Hilbert modularity; Double octic; Faltings-Serre-Livne method; | |
| DOI : 10.1016/j.jnt.2019.09.015 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We exhibit three double octic Calabi-Yau threefolds, a non-rigid threefold defined over Q and two rigid threefolds over the quadratic fields Q [root 5], Q [root-3], and prove their modularity. The non-rigid threefold has two conjugate Hilbert modular forms for the field Q [root 2] of weight [4, 2] and [2,4] attached while the two rigid threefolds correspond to a Hilbert modular form of weight [4, 4] and to the twist of the restriction of a classical modular form of weight 4. (C) 2019 Published by Elsevier Inc.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2019_09_015.pdf | 981KB |
PDF