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1. Introduction

After the modularity of elliptic curves over Q was proven, much emphasis has been put 
on Calabi–Yau threefolds. Indeed, for rigid Calabi–Yau threefolds over Q, the modularity 
has been established in the meantime independently in [8], [11] as a consequence of 
Serre’s conjecture [15], [16]. Over number fields other than Q, however (where Serre’s 
conjecture is completely open), there seems to be only one (Hilbert) modular example 
to date (outside the CM case), the Consani–Scholten quintic from [3], [10].

This paper will provide three more examples of modular Calabi-Yau threefolds, each 
of which is defined over some quadratic field K. In detail, we will exhibit

(1) a non-rigid Calabi–Yau threefold X over Q (with b3(X) = 4) admitting a ratio-
nal self-map over Q[

√
2] which can be used to split H3(X) into two 2-dimensional 

eigenspaces; the corresponding two-dimensional Galois representations of Gal(Q̄/

Q[
√

2]) are proved to correspond to a Hilbert modular form over Q[
√

2] of weight 
[4, 2] and its Galois conjugate (Theorem 4.1, Remark 4.2);

(2) a rigid Calabi–Yau threefold Y over Q[
√

5] such that the Galois representation on 
H3(Y ) corresponds to a Hilbert modular form over Q[

√
5] of weight [4, 4] (Theo-

rem 5.1);
(3) a rigid Calabi–Yau threefold Z over Q[

√
−3] such that the Galois representation on 

H3(Z) corresponds to a twist of the restriction of a classical modular form of weight 
4 and level 72 (Theorem 6.2).

The Calabi–Yau threefolds will be constructed as crepant resolutions of certain double 
octics. More precisely, we will choose the branch locus to consist of 8 distinct planes. 
The construction, following [19], will be reviewed in Section 3.

Calabi–Yau varieties come with the benefit that the Hodge diamond is relatively 
simple. It follows that all but the middle cohomology is spanned by algebraic cycles, so 
that the Galois group acts on the even cohomology through a finite group after a Tate 
twist (and this can be determined explicitly from the geometry, see Section 4 e.g.). In our 
cases, the automorphy of all cohomology thus only depends on the middle cohomology.

The proof of the modularity of the non-rigid threefold X relies on a detailed geometric 
study. We can write down explicitly its deformation family, the Picard-Fuchs operator 
of this family is symmetric and the considered threefold corresponds to a fixed point of 
this symmetry. Using a presentation of X as a Kummer fibration associated to a pair 
of rational elliptic surfaces, we are able to construct a rational, generically two-to-one 
correspondence between the symmetric threefolds. This map gives a rational self-map Ψ
of X that acts as multiplication by 

√
2 on H3,0 ⊕H0,3 and as multiplication by −

√
2 on 

H2,1 ⊕H1,2. Consequently it decomposes the restriction of the Galois action on H3(X)
to the absolute Galois group GK of the number field K = Q[

√
2] into two 2-dimensional 

pieces H3
+ ⊕H3

−. Equivalently, the Galois representations satisfy H3(X) = IndGQ

G H3
+.
K
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With these preparations, the proofs of the mentioned results amount to comparing the 
two-dimensional Galois representations attached to the motive of the third cohomology 
of the Calabi–Yau threefolds (or the given submotives H3

+, H
3
− in the first case) on the 

one hand and to the Hilbert or classical modular forms in question on the other. In 
practice, this can be achieved by working with the 2-adic (or 

√
2-adic) representations 

and applying a method going back to Faltings and Serre and worked out in detail by Livné 
in [17]. This technique will be explained, with a view towards the given base fields, in 
Section 2. In essence, it reduces the proof of modularity to comparing a suitable number 
of traces and determinants of the Galois representations at certain Frobenius elements; 
these, in turn, can be obtained from extensive point counting using the Lefschetz fixed 
point formula (and the rational self-map Ψ), and from Hilbert modular forms calculations 
as incorporated in MAGMA.

Acknowledgments

We are indebted to Ariel Pacetti and John Voight for very helpful explanations. 
Thanks to Neil Dummigan, Cris Poor and David Yuen for discussions on Siegel modular 
forms. We are grateful to the anonymous referee for comments and corrections.

2. Faltings–Serre–Livné method

In this section we study special cases of [17, Thm. 4.3]; they will be instrumental in 
establishing the modularity of the three two-dimensional Galois representations attached 
to the Calabi–Yau threefolds X, Y, Z to be introduced in the next sections.

Throughout this section, the set-up comprises continuous two-dimensional 2-adic Ga-
lois representations of the absolute Galois group of a specified number field K which are 
unramified outside a given finite set S of prime ideals in the integer ring OK of K. For 
simplicity, we list prime ideals just by a single generator. The norms will be included in 
the tables to follow.

Proposition 2.1. Let K = Q[
√

2] and E = Q2[
√

2] and let P :=
√

2Z2[
√

2] be the maximal 
ideal of the ring of integers of E. Let S := {

√
2, 3} and

T = {5, 11,
√

2 + 3,
√

2 − 3, 3
√

2 − 1,
√

2 + 5,
√

2 − 5, 4
√

2 − 1, 4
√

2 + 1, 5
√

2 − 3,
√

2 − 7,
√

2 + 7, 4
√

2 − 11, 1 − 7
√

2}
U = {5, 11, 13,

√
2 − 3, 3

√
2 − 1,

√
2 − 5, 4

√
2 − 1, 5

√
2 − 3}

be two sets of primes in OK . Suppose that ρ1, ρ2 : Gal(K̄/K) −→ GL2(E) are continuous 
Galois representations unramified outside S and satisfying

1. Tr(ρ1(Frobp)) ≡ Tr(ρ2(Frobp)) ≡ 0 (mod P) for p ∈ U ,
2. det(ρ1) ≡ det(ρ2) (mod P),
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3. Tr(ρ1(Frobp)) = Tr(ρ2(Frobp)) and det(ρ1(Frobp)) = det(ρ2(Frobp)) for p ∈ T .

Then ρ1 and ρ2 have isomorphic semisimplifications.

Proof. Following the arguments of [17] we first verify that assumption 1. implies that 
Tr(ρ1) ≡ Tr(ρ2) ≡ 0 (mod P). Indeed, suppose that Tr(ρi) �≡ 0 (mod P) and denote by 
L/K the Galois extension cut out by the kernel Ker ρ̄i of the reduction ρ̄i of ρi modulo 
P. By inspection, we have im(ρ̄i) ⊆ GL2(F2) where the elements of odd trace are exactly 
those of order 3 (which by assumption will correspond to some Frobenius elements). 
Hence, the Galois group of the extension L/K is isomorphic to S3 or C3, so it is the 
Galois closure of a degree 3 extension M/K.

Then M is a degree 6 extension of Q unramified outside {2, 3}. The database [14]
lists 398 such fields presented by a monic degree 6 polynomial with rational coefficients. 
The assumption that M contains the subfield K = Q[

√
2] implies that the minimal 

polynomial of any primitive element of the extension M/Q factors over Q[
√

2]. We 
check that exactly 25 of the 398 polynomials from [14] satisfy this condition. For each of 
these 25 degree 6 polynomials, we determine a prime integer p such that the reduction 
of the degree 3 polynomial over K modulo a prime p in OK over p stays irreducible over 
OK/p ∼= Fp. We list these data below.

x6 − 2x3 − 1 =
(
x3 +

√
2 − 1

)
×

(
x3 −

√
2 − 1

)
, p = 5

x6 − 12x4 + 36x2 − 8 =
(
x3 − 6x− 2

√
2
)
×
(
x3 − 6x + 2

√
2
)
, p = 5

x6 − 2 =
(
x3 +

√
2
)
×
(
x3 −

√
2
)
, p = 7

x6 − 4x3 + 2 =
(
x3 +

√
2 − 2

)
×

(
x3 −

√
2 − 2

)
, p = 5

x6 + 6x4 + 9x2 − 8 =
(
x3 + 3x + 2

√
2
)
×

(
x3 + 3x− 2

√
2
)
, p = 11

x6 + 6x4 + 9x2 − 2 =
(
x3 + 3x−

√
2
)
×
(
x3 + 3x +

√
2
)
, p = 5

x6 − 6x4 − 6x3 + 12x2 − 36x + 1 =
(
x3 + 3

√
2x2 + 6x + 2

√
2 − 3

)

×
(
x3 − 3

√
2x2 + 6x− 2

√
2 − 3

)
, p = 7

x6 − 18 =
(
x3 − 3

√
2
)
×
(
x3 + 3

√
2
)
, p = 7

x6 − 6x4 − 12x3 + 12x2 − 72x + 28 =
(
x3 − 3

√
2x2 + 6x− 2

√
2 − 6

)

×
(
x3 + 3

√
2x2 + 6x + 2

√
2 − 6

)
, p = 13

x6 − 6x3 − 9 =
(
x3 − 3

√
2 − 3

)
×
(
x3 + 3

√
2 − 3

)
, p = 5
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x6 − 6x4 − 4x3 + 9x2 + 12x− 14 =
(
x3 − 3x− 3

√
2 − 2

)

×
(
x3 − 3x + 3

√
2 − 2

)
, p = 5

x6 − 18x4 − 12x3 + 81x2 + 108x + 18 =
(
x3 − 9x + 3

√
2 − 6

)

×
(
x3 − 9x− 3

√
2 − 6

)
, p = 5

x6 + 6x4 − 4x3 − 9x2 + 12x− 4 =
(
x3 + 3

√
2x + 3x− 2

√
2 − 2

)

×
(
x3 − 3

√
2x + 3x + 2

√
2 − 2

)
, p = 31

x6 + 6x4 − 4x3 + 9x2 − 12x− 4 =
(
x3 + 3x + 2

√
2 − 2

)

×
(
x3 + 3x− 2

√
2 − 2

)
, p = 23

x6 − 6x4 − 4x3 + 9x2 + 12x− 4 =
(
x3 − 3x− 2

√
2 − 2

)

×
(
x3 − 3x + 2

√
2 − 2

)
, p = 5

x6 − 12x3 + 18 =
(
x3 + 3

√
2 − 6

)
×

(
x3 − 3

√
2 − 6

)
, p = 5

x6 − 12x3 − 36 =
(
x3 + 6

√
2 − 6

)
×

(
x3 − 6

√
2 − 6

)
, p = 5

x6 − 6x4 − 4x3 − 9x2 − 12x− 4 =
(
x3 − 3

√
2x− 3x− 2

√
2 − 2

)

×
(
x3 + 3

√
2x− 3x + 2

√
2 − 2

)
, p = 41

x6 − 8x3 − 18x2 − 48x− 16 =
(
x3 − 3

√
2x− 4

√
2 − 4

)

×
(
x3 + 3

√
2x + 4

√
2 − 4

)
, p = 7

x6 + 6x4 − 12x3 + 9x2 − 36x + 28 =
(
x3 + 3x− 2

√
2 − 6

)

×
(
x3 + 3x + 2

√
2 − 6

)
, p = 17

x6 − 8x3 − 18x2 + 24x + 8 =
(
x3 − 3

√
2x + 2

√
2 − 4

)

×
(
x3 + 3

√
2x− 2

√
2 − 4

)
, p = 13

x6 − 16x3 − 18x2 + 48x + 32 =
(
x3 + 3

√
2x− 4

√
2 − 8

)

×
(
x3 − 3

√
2x + 4

√
2 − 8

)
, p = 11
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x6 − 18x4 − 36x3 − 81x2 − 108x + 36 =
(
x3 − 9

√
2x− 9x− 12

√
2 − 18

)

×
(
x3 + 9

√
2x− 9x + 12

√
2 − 18

)
, p = 11

x6 − 18x4 − 12x3 + 81x2 + 108x− 36 =
(
x3 − 9x− 6

√
2 − 6

)

×
(
x3 − 9x + 6

√
2 − 6

)
, p = 11

x6 − 18x4 − 36x3 + 81x2 + 324x + 252 =
(
x3 − 9x− 6

√
2 − 18

)

×
(
x3 − 9x + 6

√
2 − 18

)
, p = 11

Given M and p as above, it follows that any element in the conjugacy class of Frobp

in Gal(L/K) has order 3; consequently Tr(ρi(Frobp)) ≡ 1 (mod P), contradicting our 
assumptions. Thus we see that the set U was indeed chosen in such a way that condition 
1. implies that

Tr(ρ1) ≡ Tr(ρ2) ≡ 0 (mod P).

The traces being even is the key ingredient to apply [17, Thm. 4.3]. To this end, let 
KS be the compositum of all quadratic extensions of K unramified outside S. Since the 
ring OK is a unique factorization domain, the compositum KS is obtained by extracting 
square roots of generators of O∗

K and of prime elements α ∈ OK with norm NK(α)
divisible only by elements of S. Presently, generators of KS/K can be taken as

√
−1, 4

√
2,
√√

2 − 1,
√

3.

One computes the table of quadratic characters Gal(KS/K) −→ (Z/2)4 at the primes 
from T as follows:

p N(p)
√

2 3 −1
√

2 − 1 p N(p)
√

2 3 −1
√

2 − 1
5 25 1 0 0 0 4

√
2 − 1 31 0 1 1 0

11 121 0 0 0 1 4
√

2 + 1 31 1 1 1 1√
2 + 3 7 0 1 1 1 5

√
2 − 3 41 1 1 0 0√

2 − 3 7 1 1 1 0
√

2 − 7 47 0 0 1 0
3
√

2 − 1 17 1 1 0 1
√

2 + 7 47 1 0 1 1√
2 + 5 23 0 0 1 1 4

√
2 − 11 89 0 1 0 1√

2 − 5 23 1 0 1 0 1 − 7
√

2 97 1 0 0 1

From the table we infer that the image of the Frobenius elements Frobt, t ∈ T , contains 
14 different non-zero elements, hence it is non–cubic in the terminology of [17, Def. 
4.1] (see e.g. [22, p. 53]). Thus the assertion that the Galois representations ρ1, ρ2 have 
isomorphic semisimplifications follows from [17, Thm. 4.3]. �
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Remark 2.2. Since the image of ρ̄i lies in the solvable group GL2(F2), one can also 
compute the set U using class field theory. This approach was used in [1], [9], and [20].

Note in particular that Proposition 2.1 implies that ρ1, ρ2 have the same L-series, a 
feature which will be centrally used in the proof of the modularity results stated in the 
introduction. The next two propositions concern the same kind of problem for different 
base fields and adjusted ramification sets. Since the arguments are very similar, we give 
only the essential ingredients.

Proposition 2.3. Let K = Q[
√

5], E = Q2 and let P := 2Z2 be the maximal ideal of the 
ring of integers of E. Let S := {2} and

T = {3, 13,
√

5 + 4, 2
√

5 + 7,
√

5 + 6,
√

5 − 6, 2
√

5 + 9}

be two sets of primes in OK . Suppose that ρ1, ρ2 : Gal(K̄/K) −→ GL2(E) are continuous 
Galois representations unramified outside S and satisfying

1. Tr(ρ1(Frob3)) ≡ Tr(ρ2(Frob3)) ≡ 0 (mod P),
2. det(ρ1) ≡ det(ρ2) (mod P),
3. Tr(ρ1(Frobp)) = Tr(ρ2(Frobp)) and det(ρ1(Frobp)) = det(ρ2(Frobp)) for p ∈ T .

Then ρ1 and ρ2 have isomorphic semisimplifications.

Proof. By [14] there are 106 degree 6 extensions of Q unramified outside {2, 5}. Only 
one of them contains Q[

√
5]; it is defined by the following polynomial:

x6 − 2x5 − 2x− 1 =
(
x3 − x2 + 1

2 (−1 +
√

5)x + 1
2(−1 +

√
5)
)

×
(
x3 − x2 − 1

2 (1 +
√

5)x− 1
2 (1 +

√
5)
)

As both cubic polynomials over Z[
√

5] are irreducible modulo 3, assumption 1. implies 
that Tr(ρ1) ≡ Tr(ρ2) ≡ 0 (mod P) as required.

The compositum KS of quadratic extensions of K unramified outside S is obtained 

from the three quadratic extensions K[
√

2], K[
√
−1], K[

√
1
2 (
√

5 − 1)]. The table of char-
acters is computed as follows:

p N(p) 2 −1 1
2 (
√

5 − 1) p N(p) 2 −1 1
2 (
√

5 − 1)
3 9 1 1 0

√
5 + 6 31 1 0 0

13 169 1 1 1
√

5 − 6 31 1 0 1√
5 + 4 11 0 0 1 2

√
5 + 9 61 0 1 0

2
√

5 + 7 29 0 1 1
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From the table, we infer that the image of the Frobenius elements Frobt, t ∈ T equals 
(Z/2)3 \ {0}; in particular, it is non-cubic, and the Proposition follows from [17, Thm. 
4.3] as before. �
Proposition 2.4. Let K = Q[

√
−3], E = Q2 and let P := 2Z2 be the maximal ideal of 

the ring of integers of E. Let S := {2, 
√
−3} and

T = {
√
−3 − 2,

√
−3 + 2, 1 + 2

√
−3,

√
−3 − 4,

√
−3 + 4, 5 + 2

√
−3, 5 + 4

√
−3}

U = {11,
√
−3 − 2, 1 + 2

√
−3,

√
−3 − 4}

be three sets of primes in OK . Suppose that ρ1, ρ2 : Gal(K̄/K) −→ GL2(E) are contin-
uous Galois representations unramified outside S and satisfying

1. Tr(ρ1(Frobp)) ≡ Tr(ρ2(Frobp)) ≡ 0 (mod P) for p ∈ U ,
2. det(ρ1) ≡ det(ρ2) (mod P),
3. Tr(ρ1(Frobp)) = Tr(ρ2(Frobp)) and det(ρ1(Frobp)) = det(ρ2(Frobp)) for p ∈ T .

Then ρ1 and ρ2 have isomorphic semisimplifications.

Proof. We claim that condition 1. implies Tr(ρ1) ≡ Tr(ρ2) ≡ 0 (mod P). To prove this 
we have to determine all cubic extensions of Q[

√
−3], which are unramified outside S; 

they give degree 6 extensions of Q unramified outside {2, 3} as in the proof of Proposi-
tion 2.1. Out of the 398 extensions 16 contain Q[

√
−3]; they are given by the following 

degree six polynomials

x6 − x3 + 1, x6 − 3x5 + 5x3 − 3x + 1, x6 + 3, x6 − 3x5 + 3x3 + 6x2 − 9x + 3,

x6 − 3x4 − 2x3 + 9x2 + 12x + 4, x6 − 2x3 + 4, x6 − 3x3 + 3, x6 + 12,

x6 + 48, x6 − 3x4 + 9x2 − 18x + 12, x6 − 6x3 + 12, x6 − 6x3 + 36,

x6 + 18x4 + 81x2 + 12, x6 + 3x4 − 2x3 + 9x2 − 12x + 4, x6 + 27x2 − 36x + 12,

x6 − 6x4 − 4x3 + 9x2 + 12x + 52

each of which factors into a product of degree 3 polynomials over Q[
√
−3]. One readily 

verifies that each degree 3 polynomial has irreducible reduction modulo at least one 
prime from U . The evenness of the traces follows.

The compositum KS of all quadratic extensions of Q[
√
−3] unramified outside 

{2, 
√
−3} equals the compositum of Q[

√
−3, 

√
2], Q[ 4

√
−3], Q[

√
1
2 (
√
−3 + 1)]. From the 

table of quadratic characters below, we read off that the elements from the Galois group 
Gal(KS/Q[

√
−3]) corresponding to Frobenius elements at the primes from T form a 

non-cubic set. Now the proposition follows from [17, Thm. 4.3].
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p N(p)
√
−3 2 1

2 (
√
−3 + 1) p N(p)

√
−3 2 1

2 (
√
−3 + 1)√

−3 − 2 7 0 0 1
√
−3 + 4 19 1 1 1√

−3 + 2 7 1 0 1 5 + 2
√
−3 37 0 1 0

1 + 2
√
−3 13 1 1 0 5 + 4

√
−3 73 1 0 0√

−3 − 4 19 0 1 1 �
3. Double octics

In this paper we shall study the modularity of three Calabi-Yau threefolds constructed 
as crepant resolution of a double cover of the projective space P 3 branched along an 
arrangement of eight planes S = P1 ∪ · · · ∪ P8.

If the planes satisfy the following two conditions:

no six planes intersect, no four planes contain a common line, (3.1)

then the double cover admits a projective crepant resolution of singularities. One calls 
the resulting Calabi-Yau threefold a double octic. It is sometimes useful to note that the 
crepant resolution can be arranged in such a way that it exhibits the double cover as a 
double cover of a blow-up of the projective space.

One of the key features of double octics is that one can control their invariants, 
in particular their Hodge numbers (where only h1,1, h1,2 are essential for Calabi–Yau 
threefolds). In particular, this is instrumental for constructing rigid double octics or 
one-dimensional families (accounting for all the infinitesimal deformations of the smooth 
members, i.e. h1,2 = 1). For brevity, we omit the details here and refer the reader to the 
section 4.2 of C. Meyer’s monograph [19].

4. Double octic with real multiplication by Q[
√

2]

Let X be the double octic Calabi-Yau threefold constructed as a resolution of the 
double covering of P 3 branched along the following 8 hyperplanes:

u2 = x(x− z)(x− v)(x− z − v)y(y − z)(y − v)(y + 2z + v).

By separating the variables x, y on the right-hand side, one realizes that the double 
octic X admits a fibration by Kummer surfaces (the fibration is induced by the map 
(x, y, z, v, u) �→ (z, v)). Following [21], this Kummer structure arises from the fiber prod-
uct of rational elliptic surfaces with singular fibers I4, I4, I2, I2 and I2, I2, I2, I2, I2, I2
where the singular fibers are located as follows:

∞ 0 1 −1 −1
2 −1

3

I4 I4 I2 I2

I2 I2 I2 I2 I2 I2
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The Calabi-Yau threefold X is isomorphic to the element corresponding to t = −1/2 of 
the one parameter family defined by the Arrangement No. 250 ([19]). In particular

h11(X) = 37, h12(X) = 1, (4.1)

and the only primes of bad reduction of X are 2 and 3. The Riemann-symbol of the 
Picard-Fuchs operator of the family of Calabi–Yau threefolds defined by the Arrangement 
No. 250 is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2 −1 −1/2 0 1 ∞
0 0 0 0 0 1/2
1 1/2 1 1/2 1 1/2
1 1/2 3 1/2 1 3/2
2 1 4 1 2 3/2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(for details see [6]). The Picard-Fuchs operator is symmetric with respect to the invo-
lution t �→ −1 − t and its fixed point t = −1

2 is an apparent singularity. The family, 
however, does not seem to be symmetric in an obvious way. Our findings depend in an 
essential way on a correspondence between members of the family exchanged by the 
involution. Applied to the given Calabi–Yau threefold X, the correspondence induces a 
two-to-one rational map

Ψ : X −→ X

defined over Q[
√

2] by

Ψ :

⎛
⎜⎜⎜⎝

x
y
z
v
u

⎞
⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x (x− v − z) (z − v) (3 y + v)
1
2 (3 z + v)

(
v2 − 2xv + zv + 2x2 − 2xz

)
(y − v)

1
2
(
v2 − 2xv + zv + 2x2 − 2xz

)
(3 y + v) (z + v)

1
2
(
v2 − 2xv + zv + 2x2 − 2xz

)
(3 y + v) (z − v)

√
2

2 (v − z) (v + 3 y)2 v2 (2x− v − z) (v + z) (3 z + v)
×
(
v2 − 2xv + zv + 2x2 − 2xz

)2
u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The pullback by Ψ of a canonical form ωX is Ψ∗ωX =
√

2ωX . In particular the map 
Ψ∗ acts as multiplication by 

√
2 on H3,0(X) ⊕ H0,3(X). On the other hand, the map 

Ψ∗ acts as multiplication by (−1) on the infinitesimal deformation space H1(TX) and 
hence as multiplication by (−

√
2) on H1,2(X) ⊕ H2,1(X) (by Serre duality there is an 

isomorphism between vector spaces H1,2(X) and (H1(TX) ⊗H3,0)∗ compatible with the 
action induced by Ψ). Consequently the map Ψ decomposes the motive H3(X) into a 
direct sum of two two-dimensional submotives

H3(X) = H3
+ ⊕H3

− (4.2)
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defined as (±
√

2)–eigenspaces of Ψ∗. The restriction of the Galois action to the sub-group 
Gal(Q̄/Q[

√
2]) preserves the two submotives and hence decomposes H3(X) as the direct 

sum of two Galois-conjugate Galois representations

ρ, ρ̄ : Gal(Q̄/Q[
√

2]) −→ GL2(Q2[
√

2]).

We shall study these Galois representations using the Lefschetz fixed point formula (in 
order to eventually prove their modularity). To this end, we have to inspect the crepant 
resolution of the double octic more closely.

The Calabi-Yau threefold X is a double covering of a blow-up X ′ of the projective 
space P 3, consequently there is an involution i : X −→ X acting on X. This involution 
induces a decomposition

Pic(X) = H2(X,Z) = H2
sym(X,Z) ⊕H2

skew(X,Z)

of the Picard group of X into symmetric and skew-symmetric part. The symmetric part 
H2

sym(X, Z) is isomorphic to the cohomology group H2(X ′, Z). The octic arrangement 
defining the Calabi-Yau threefold X has 28 double lines and 8 fourfold points, conse-
quently in the process of resolution of singularities of X we blow-up the doubly covered 
projective space 36 times and the rank of the cohomology group H2(X ′, Z) equals 37. 
It follows from (4.1) that the cohomology group H2(X, Z) is generated by classes of 
symmetric divisors defined over Q. By the comparison theorem, for any prime p ≥ 5 the 
Frobenius morphism Frobp acts on the étale cohomology H2

et(X̄p, Ql) by multiplication 
by p, where Xp is the reduction of X modulo p and X̄p = X ⊗ F̄p, and likewise for all 
powers Frobq = Frobr

p.
In order to compute the trace of the Frobenius morphism Frobq using the Lefschetz 

fixed point formula, first we count the points Nq on the singular double octic over Fq

using a computer program, then we add the correction terms for the crepant resolution 
of singularities. Over Q, the exceptional locus of the blow-up of a fourfold point not 
contained in any triple line (type p0

4 in the notation of [19]) is isomorphic to a surface

E = {u2 = αxyz(x + y + z) ⊂ P 3(1, 1, 1, 2)}, where α ∈ Q. (4.3)

The number of points on E over Fq equals q2 + 2q + 1 if −α is a square in Fq and q2 + 1
otherwise (for details see [19, p. 56]). Presently the eight fourfold points are

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(1, 0, 0, 1), (1, 0, 1, 0), (0, 1,−1, 1), (1, 1, 1, 1).

(4.4)

The projective transformation (x, y, z, v) �→ (−x + v, y − v, x − z, v) maps the point 
(1, 1, 1, 1) to (0, 0, 0, 1) and the octic arrangement x(x − z)(x − v)(x − z− v)y(y− z)(y−
v)(y+2z+ v) to xyz(x + y+ z)(x − v)(z− v)(−2x + y− 2z+4v), so the coefficient α for 
(1, 1, 1, 1) equals 4. In a similar way, the coefficients α for all fourfold points in the order 
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of (4.4) can be computed as 8, −1, 2, 1, 1, 2, 8, 4. Any other blow-up adds q2 + q points to 
X. Consequently

#X̄p(Fp2) = Np2 + 28(p4 + p2) + 8(p4 + 2p2)

and

#X̄p(Fp) = Np + 28(p2 + p) + (p2 + 2p) + 3
(
p2 + p +

(
−1
p

)
p
)

+ 4
(
p2 + p +

(
−2
p

)
p
)
.

Since the Frobenius morphism Frobq acts on H2(X̄p) by multiplication by q we have 
Tr(Frobq |H2(X̄p)) = 37q and Tr(Frobq |H4(X̄p)) = 37q2. By the Lefschetz fixed point 
formula, the trace of Frobp2 on H3

et(X̄p, Ql) thus equals

ap2 := Tr(Frobp2 |H3(X̄p)) = −Np2 + p6 + p4 + 9p2 + 1

By (4.2), the Galois representation on H3(X) equals its tensor product with the Dirichlet 
character associated to the Legendre symbol ( 2

p ). Hence, if p is an inert prime in Q[
√

2], 
the trace of Frobp on H3(X) vanishes:

ap := Tr(Frobp |H3(X)) = 0;

consequently the Frobenius polynomial equals

X4 − ap2

2 X2 + p6.

If Fp ∈ Gal(Q̄/Q[
√

2]) is a Frobenius element, then the trace of the value of ρ and ρ̄ at 
Fp equals

Tr(ρ(Fp)) = Tr(ρ̄(Fp)) = 1
2ap

2 .

If p is a split prime, then the trace of Frobp2 can be computed as before by a point 
count in Fp2 . In order to compute the trace of Frobp with a point-count, we have to take 
into account the contribution from the eight fourfold points of the arrangement. Using 
(4.3) we get in this situation

ap := Tr(Frobp |H3(X)) = −Np + p3 + p3 + p
(
2 + 3

(
−1
p

)
+ 4

(
−2
p

))
+ 1.

The Frobenius polynomial equals

χ(Frobp) = X4 − apX
3 − 1

2 (a2
p + ap2)X2 − app

3X + p6.

In the following table we collect Frobenius polynomials for the values of p that we will 
need to prove modularity.
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p ap ap2 Fp

5 0 20 X4 − 10X2 + 15625

7 32 −796 X4 − 32 X3 + 910 X2 − 10976 X + 117649
(X2 + 4 

√
2X − 16 X + 343) × (X2 − 4 

√
2X − 16 X + 343)

11 0 −1452 X4 + 726 X2 + 1771561
(X2 − 44 X + 1331) × (X2 + 44 X + 1331)

17 −124 −10940 X4 + 124 X3 + 13158 X2 + 609212 X + 24137569
(X2 + 16 

√
2X + 62 X + 4913) × (X2 − 16 

√
2X + 62 X + 4913)

23 80 −45212 X4 − 80 X3 + 25806 X2 − 973360 X + 148035889
(X2 + 8 

√
2X − 40 X + 12167) × (X2 − 8 

√
2X − 40 X + 12167)

31 272 −59068 X4 − 272 X3 + 66526 X2 − 8103152 X + 887503681
(X2 − 76 

√
2X − 136 X + 29791) × (X2 + 76 

√
2X − 136 X + 29791)

41 84 −148252 X4 − 84 X3 + 77654 X2 − 5789364 X + 4750104241
(X2 − 176 

√
2X − 42 X + 68921) × (X2 + 176 

√
2X − 42 X + 68921)

47 −64 −134460 X4 + 64 X3 + 69278 X2 + 6644672 X + 10779215329
(X2 + 264 

√
2X + 32 X + 103823) × (X2 − 264 

√
2X + 32 X + 103823)

89 −2476 507556 X4 + 2476 X3 + 2811510 X2 + 1745503244 X + 496981290961
(X2 + 256 

√
2X + 1238 X + 704969) × (X2 − 256 

√
2X + 1238 X + 704969)

97 1284 −2822268 X4 − 1284 X3 + 2235462 X2 − 1171872132 X + 832972004929
(X2 + 32 

√
2X − 642 X + 912673) × (X2 − 32 

√
2X − 642 X + 912673)

To avoid working with four-dimensional Galois representations (as in [10]), we have 
to determine the precise traces of Frobp on H3

+ and H3
− for a prime of OK above p. To 

this end, we shall exploit the rational self-map Ψ; more precisely, we study the action of 
Frobp ◦Ψ on H3(X). This map preserves the Kummer fibration and transforms the fiber 
at (z, v) into the fiber at (z + v, z − v). This allows us to determine the number of fixed 
points of Ψ; indeed, we can restrict ourselves to the fibers at (1 ±

√
2, 1). At those points, 

the fiber is isomorphic to the Kummer surface of the product of the elliptic curves

u2 = x3 − 30x + 56 and u2 = y3 − y,

and the map Ψ is induced by the complex multiplications given

x �−→ −x2 − 4x + 18
2(x− 4) and y �−→ −y + 1

y − 1 .

As the map Ψ acts on H0,3 ⊕ H3,0 as multiplication by 
√

2 and on H2,1 ⊕ H1,2

as multiplication by −
√

2, we infer that the trace of the induced map on the third 
cohomology is zero: tr(Ψ∗|H3) = 0. Using Magma we computed that the map Ψ has 
Lefschetz number equal 12, so we get

tr(Ψ∗|H0) = 1, tr(Ψ∗|H2) + tr(Ψ∗|H4) = 9, tr(Ψ∗|H6) = 2.

In a similar way we computed the trace of the composition Frobp ◦Ψ for split primes 
p = 7, 17, 23, 31, 47, 89. As the Picard group of X is defined by divisors defined over Q, 
the Frobenius morphism Frob∗

p acts on H2k as multiplication by pk, k = 0, 1, 2, 3. By 
direct computations with Magma (using the code given in [7], the computations took 
about 30 hours), we found the Lefschetz numbers listed in the table below.
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p 3 +
√

2 3 −
√

2 3
√

2 − 1 5 +
√

2 5 −
√

2 4
√

2 + 1
N(p) 7 7 17 23 23 31

L(Frobp ◦Ψ) 944 976 11404 27104 27040 64208

tr(Frob∗
p |H3

+) 16 + 4
√

2 16 − 4
√

2 −62 − 16
√

2 40 − 8
√

2 40 + 8
√

2 136 + 76
√

2

p 4
√

2 − 1 5
√

2 − 3
√

2 + 7
√

2 − 7 4
√

2 − 11 1 − 7
√

2
N(p) 31 41 47 47 89 97

L(Frobp ◦Ψ) 64816 147116 219936 217824 1450924 1872652
tr(Frob∗

p |H3
+) 136 − 76

√
2 42 − 176

√
2 −32 − 264

√
2 −32 + 264

√
2 −1238 − 256

√
2 642 + 32

√
2

The table also lists the traces of Frobp ◦Ψ on H3(X). These can be determined as follows. 
Since we do not know which factor of the Frobenius polynomial Fp corresponds to the 
characteristic polynomial of Frobp on H3

+ and which to H3
−, we can determine the trace 

of Frobp ◦Ψ a priori only up to a sign. From the table on page 7 we get the following 
values of traces of Frob∗

p on H3
+/H

3
−

7 17 23 31 41 47 89 97
16 ± 4

√
2 −62 ± 16

√
2 40 ± 8

√
2 136 ± 76

√
2 42 ± 176

√
2 −32 ± 264

√
2 −1238 ± 256

√
2 642 ± 32

√
2

We have for any split prime p ∈ Z and any prime p ∈ Z[
√

2] over p

L(Frob∗
p ◦Ψ) = 1 + p tr(Ψ∗|H2) −

√
2(tr(Frob∗

p |H3
+) − tr(Frob∗

p |H3
−))

+ p2 tr(Ψ∗|H4) + 2p3,

and

tr(Ψ∗|H2) + tr(Ψ∗|H4) = 9.

In the case p = 7, p = 3 −
√

2 we get two possibilities

976 = 1 + 7 tr(Ψ∗|H2) −
√

2((16 − 4
√

2) − (16 + 4
√

2)) + 49 tr(Ψ∗|H4) + 686

or

976 = 1 + 7 tr(Ψ∗|H2) −
√

2((16 + 4
√

2) − (16 − 4
√

2)) + 49 tr(Ψ∗|H4) + 686,

or equivalently,

273 = 7(tr(Ψ∗|H2) + 7 tr(Ψ∗|H4)) and 305 = 7(tr(Ψ∗|H2) + 7 tr(Ψ∗|H4))

As 7 � 305, the second option is impossible and consequently

tr(Ψ∗|H2) + 7 tr(Ψ∗|H4) = 39.
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Together with

tr(Ψ∗|H2) + tr(Ψ∗|H4) = 9,

this yields

tr(Ψ∗|H2) = 4, tr(Ψ∗|H4) = 5.

Now, we get
√

2(tr(Frob∗
p |H3

+) − tr(Frob∗
p |H3

−)) = −L(Frob∗
p ◦Ψ) + 1 + 4p + 5p2 + 2p3,

and we can compute the entries of the above table.
Using Magma one finds 3 Hilbert modular forms for K = Q[

√
2] of weight [4, 2] and 

level 6
√

2OK . For one of them, let us denote it by h1, the Hecke eigenvalues agree exactly 
with the traces of the action of Frobenius on H3

+ computed in the above table. (For the 
reader’s convenience, we provide a table of eigenvalues at [7].)

Theorem 4.1. The Galois representation of Gal(Q̄/Q[
√

2]) on the motive H3
+ is isomor-

phic to the Galois representation of the Hilbert modular form h1 for K = Q[
√

2] of weight 
[4, 2] and level 6

√
2OK .

Proof. There exist continuous Galois representations

ρ1, ρ2 : Gal(Q̄/Q[
√

2]) −→ GL2(Q2[
√

2])

defined by the motive H3
+ and the Hilbert modular form h1. We shall verify that the 

representations ρ1 and ρ2 satisfy the assumptions of Proposition 2.1. We have computed 
the traces of Frobp |H3

+ for p ∈ T and verified with MAGMA that they agree with Hecke 
eigenvalues of h1; for p ∈ U we check that both traces are even. Moreover for any p ∈ T

we check that det(ρ1(Frobp)) = p3. Since det(ρ1(Frobp))|p6 for any p ≥ 5 and any prime 
p in Q[

√
2] over p, it follows that det(ρ1(Frobp)) is odd.

Finally, h1 is a Hilbert modular form with trivial character, so det(ρ2(Frobp)) = N(p)3
(which is odd). Thus the assumptions of Proposition 2.1 are satisfied, and applying the 
proposition concludes the proof. �
Remark 4.2. It follows that the Galois representation on the motive H3

− is isomorphic 
to the Galois representation of the Hilbert modular form h̄1 for Q[

√
2] of weight [2, 4]

and level 6
√

2O. Observe the divisibility condition āp ∈ p for all Hecke eigenvalues of 
h̄1 in the given range of primes (in agreement with [12, §3]). We believe that this could 
be proven geometrically using the Hodge type (2, 1) + (1, 2) of H3

− along the lines of 
[18]. This could then also simplify the determination of the factor of the characteristic 
polynomial of Frobenius corresponding to H3

+ at ordinary primes.



JID:YJNTH AID:6398 /FLA [m1L; v1.261; Prn:24/10/2019; 14:33] P.16 (1-20)
16 S. Cynk, M. Schütt and D. van Straten / Journal of Number Theory ••• (••••) •••–•••
Remark 4.3. It might be possible to approach the modularity of the above examples, 
and of those to come, by appealing to modularity lifting theorems, or by extending 
the parallel weight results from [2] to the non-parallel weight case. As it stands, this 
would, however, only give potential modularity and leave the precise determination of 
the corresponding modular form.

Remark 4.4. By [13, Main Theorem] there exists a Siegel modular form of degree 2, 
weight 3 and paramodular level 82 × 72 = 4608 = 2932 with L-function equal to the 
L-function of X (cf. discussion in [13, p. 545] in the case of the Hilbert modular form 
for the Consani–Scholten quintic).

5. Hilbert modular rigid Calabi-Yau threefold over Q[
√

5]

Let Y be the double octic defined as a crepant resolution of singularities of the hy-
persurface

u2 = xyzv (x + y + z) (ϕy − z + v) (x + y + ϕv) ((1 − ϕ)x + y − ϕz + ϕv)

⊂ P (1, 1, 1, 1, 4),

where ϕ = 1
2(−1 +

√
5). Then Y is a rigid Calabi-Yau threefold with h11 = 38 by [5, 

Prop. 5.4], and one verifies as before that the Picard group is generated by divisors 
defined over K = Q[

√
5] while the only prime of bad reduction of Y is 2.

For prime numbers p ≡ 1, 4 (mod 5) we computed the numbers np and np2 of points 
of the singular double covering over Fp and over Fp2 . The resolution of singularities is 
blowing up 28 double lines and 9 fourfold points; for each blow-up of a line, the number 
of points over the field Fq increases by q2+q, while a blow-up of a fourfold point increases 
the number of points by q2 + 2q or q2 as around (4.3). Consequently,

#Ȳp(Fp) = np + 28(p2 + p) + a(p2 + 2p) + (9 − a)p2 = np + 37p2 + (28 + 2a)p,

where a ∈ {0, . . . , 9} and #Ȳp(Fp2) = np2 + 37p4 + 46p2. By the Lefschetz fixed point 
formula we get the following traces on H3(Ȳp) (where we suppress the cohomology group 
to ease the notation):

Tr(Frobp2) = −np2 + p6 + p4 − 8p2 + 1, Tr(Frobp) = −np + p3 + p2 + cp + 1,

c = 10 − 2a ∈ {−8, . . . , 10},

in a similar way as for the Calabi-Yau threefold X. Moreover, comparing the actions of 
Frobp and Frobp2

Tr(Frobp2) = Tr(Frobp)2 − 2p3.
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We observe that these equalities often suffice to determine Tr(Frobp). The next table 
collects the results of the computations for the split primes which we shall need in the 
proof of modularity.

p p ϕ np np2 Tr(Frobp) Tr(Frobp2)

11
√

5 + 4 3 1459 1784297 60 938
√

5 − 4 7 1461 1786601 36 −1366

29 2
√

5 + 7 5 25217 595525129 −218 −1254

2
√

5 − 7 23 25089 595564553 −90 −40678

31
√

5 + 6 12 30685 888442233 192 −22718
√

5 − 6 18 31003 888475001 −64 −55486

61 2
√

5 − 9 17 230471 51534519081 354 −328646

2
√

5 + 9 43 230215 51534272297 610 −81862

To apply Proposition 2.3, we also require information at two inert primes. For p = 3
we were able to compute the number of points of the singular double cover of P 3 over 
F32 and F34 , obtaining n9 = 815, n81 = 538617. Similar computations as in the case 
of split primes give Tr(Frob9) = −1262 and Tr(Frob3) = 14. For p = 13 we computed 
that the number of points over F132 equals 4857691. To obtain the contribution for the 
exceptional divisors (4.3) over the fourfold points, notice that the values of α in question,

6 − 2
√

5, 1
2 (−3 + 3

√
5), 1

2 (−3 + 3
√

5), 4
√

5 − 8, −6
√

5 + 14, 1
2 (3 − 1

√
5),

6
√

5 − 14,
√

5 − 3, −1 +
√

5,

are all squares in F132 . From the Lefschetz fixed point formula we thus derive the trace 
of Frob13 on H3(Ȳ13) as

Tr(Frob13) = −(4857961 + 9 · 132) + 1 + 132 + 134 + 136 = −3942.

Using Magma we found 24 Hilbert modular forms for Q[
√

5] of parallel weight [4, 4]
and level 16O; one of them, denoted by h2, has exactly the same Hecke eigenvalues as 
the Frobenius traces above. Proposition 2.3 thus guarantees the modularity of Y :

Theorem 5.1. The Galois representation of Gal(Q̄/Q[
√

5]) on H3
et(Y, Ql) is Hilbert mod-

ular with corresponding Hilbert modular form h2.

6. Modular Calabi-Yau threefold over Q[
√
−3]

Let Z be the double octic defined as a resolution of singularities of the hypersurface

u2 = xyzv (x + y) (x + y + z − v) (ζ x− y + ζ z) (y − ζ z − v) ⊂ P (1, 1, 1, 1, 4), (6.1)
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where ζ = 1
2 (−1 + i

√
3) and, of course, i2 = −1. Then Z is a rigid Calabi-Yau threefold 

with h11 = 46 as can be checked by considering it as a member of the one-dimensional 
family of double octics given by arrangement No. 262 in [19]. As before, one verifies that 
the Picard group is generated by divisors defined over K = Q[

√
−3], and that the only 

prime of bad reduction of Z is 2.

Proposition 6.1. Z is birational to a Calabi-Yau threefold defined over Q[i].

Proof. The standard crepant resolution of a double octic proceeds as follows: blow-up 
successively fivefold points, triple lines, fourfold points and double lines. The resolution 
depends on the order of blow-ups of double lines; to overcome this subtlety we modify 
the last step and blow-up the union of all double lines in the singular double cover (cf. 
[4]). Then the map

(x, y, z, v, u) �→ (ζ x,−ζ x− ζ y,− (ζ + 1)x− y − (ζ + 1) z,− (ζ + 1) (x + y + z − t) , iu)

defines an isomorphism of Z and its Galois conjugate over K, hence Z isomorphic to a 
variety defined over Q[i] by the Weil Galois Descent Theorem ([23, Thm. 3]). �

We can count points over Fp only if p ≡ 1 (mod 6), i.e. p is a split prime in K. Above 
a given split prime p there are two prime ideals p in the ring of integers of Q[

√
−3]; this 

corresponds to two choices for ζ ∈ Fp and two possibilities for the trace of Frobenius on 
H3(Z̄p) which we list in the next table.

p ζ Tr(Frobp) ζ Tr(Frobp)
7 4 −12 2 12

13 3 −58 9 −58
19 11 −136 7 136
31 25 20 5 −20
37 26 −18 10 −18
43 6 −200 36 200
61 47 −458 13 −458
67 29 −496 37 496
73 64 602 8 602
79 55 1108 23 −1108
97 61 −206 35 −206

The computed traces agree up to sign with the Fourier coefficients of a modular form f
of weight 4 for Γ0(72) (72/1 in Meyer’s notation in [19]):

p 7 13 19 31 37 43 61 67 73 79 97
a −12 58 −136 20 −18 −200 −458 −496 −602 1108 206
p
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We compare the signs with characters from the table in the proof of Proposition 2.4 to 
notice that the sign changes are governed by the character corresponding to the extension 
Q[ 4

√
−3]/Q[

√
−3].

Theorem 6.2. Consider the Galois representation of Gal(Q̄/Q[
√
−3]) on H3

et(Z̄, Ql) and 
the one associated to the modular form f restricted to Q[

√
−3] and then twisted by 

the quadratic character associated to the extension Q[ 4
√
−3]/Q[

√
−3]. Then the Galois 

representations have isomorphic semi-simplifications.

Proof. In view of Proposition 2.4, compared to the present data, it suffices to check the 
following two properties:

•
√
−3 = 2ζ + 1 is a square in Fp if and only if the corresponding choice of Tr(Frobp)

matches the Fourier coefficient ap of f ;
• the Galois representations have even trace at p = 11.

The latter condition follows easily since a11 = 64 and any double octic Calabi–Yau 
threefold given by an arrangement of 8 planes satisfying condition (3.1) is checked to 
have an even number of points over any finite field of odd parity by an elementary 
combinatorial argument. �
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