JOURNAL OF NUMBER THEORY | 卷:175 |
Hybrid bounds for Rankin-Selberg L-functions | |
Article | |
Hou, Fei1  Zhang, Meng2  | |
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China | |
[2] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R China | |
关键词: Automorphic forms; Rankin-Selberg convolution; Subconvexity; | |
DOI : 10.1016/j.jnt.2016.11.009 | |
来源: Elsevier | |
【 摘 要 】
Let M be a square-free integer and P be a prime such that (P, M) = 1. We prove a new hybrid bound for L(1/2, f circle times g) where f is a primitive holomorphic cusp form of level M and g a primitive (either holomorphic or Maass) cusp form of level P satisfying P similar to M-eta) with 0 < eta < 2/15. Particularly in the range beta < eta < (2 - 32 beta)/15 with beta = 11/4875 we present a strengthened level aspect hybrid subconvexity bound for L(1/2, f circle times g) relative to the current bounds obtained by Holowinsky-Munshi [11] and Ye [27]. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2016_11_009.pdf | 333KB | download |