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HYBRID BOUNDS FOR RANKIN-SELBERG L-FUNCTIONS

FEI HOU AND MENG ZHANG

Abstract. Let M be a square-free integer and P be a prime such that (P,M) = 1. We prove
a new hybrid bound for L( 1

2
, f ⊗ g) where f is a primitive holomorphic cusp form of level M

and g a primitive (either holomorphic or Maass) cusp form of level P satisfying P ∼ Mη with
0 < η < 2/15. Particularly in the range β < η < (2 − 32β)/15 with β = 11/4875 we present
a strengthened level aspect hybrid subconvexity bound for L( 1

2
, f ⊗ g) relative to the current

bounds obtained by Holowinsky-Munshi [11] and Ye [27].

1. Introduction

The subconvexity problem is concerned with the magnitude of an L-function on the critical line
s = 1/2. Let π be an irreducible cuspidal representation of GL2. Given an L-function L(s, π) with
analytic conductor denoted by Q(s, π), one looks for a bound of the form

L
(1
2
, π
)
� Q

(
1

2
, π

)1/4−θ

for some constant θ > 0. In the literature many authors have been established the exponent θ in a variety
of settings. We refer the reader to [19, Chapter 4] and [17] for the backgrounds and relevant heuristics.

Several authors have made great strides in recent years to establish the level aspect hybrid bounds
for twisted L-functions attached to modular forms. Michel-Ramakrishan [21] and later generalized by
Feigon-Whitehouse [7] showed that there are “stable” formulas for the average central L-value of the
Rankin-Selberg convolutions of some holomorphic forms of fixed even weight and large level against a
fixed imaginary quadratic theta series, which as a consequence yield some hybrid subconvexity. To purely
focus on subconvexity rather than stable averages as in the works [21, 7], Blomer and Harcos [2] obtained
subconvexity for L-functions attached to twists f⊗χ of a primitive cusp form f of level M and a primitive
character modulo D, where M and D are any given positive integers. Particularly if one supposes M
and D are co-prime varying at different rates, say D ∼ Mη for some η > 0, they may show that

L
(1
2
, f ⊗ χ

)
� Q1/4+ε min

{
Q− η−2

8(1+2η) , Q− η
8(1+2η) +Q− 1−η

4(1+2η)

}
for 0 < η < 1 or η > 2, where f ∈ B∗

κ(M) or B∗
λ(M) (see §2 for definitions) and Q = MD2 is the size of

the (arithmetic) conductor Q(f ⊗ χ) of the L-function L(s, f ⊗ χ) (see [14, Chapter 7]).
Assume M is square-free. Let N be a positive square-free integer co-prime with M satisfying N ∼ Mη

for some η > 0. Given a primitive cusp form g of level N , one can verify that the (arithmetic) conductor
Q := Q(f ⊗ g) of the Rankin-Selberg L-function L(s, f ⊗ g) is (NM)2 (see for instance [9]). Holowinsky
and Munshi [11] showed that

L
(1
2
, f ⊗ g

)
� Q1/4+ε

(
Q− η

2(1+η) +Q− 2−21η
64(1+η)

)
(1.1)
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for 0 < η < 2/21, where f ∈ B∗
κ(M) and g ∈ B∗

k(N), N being restricted to be a prime. Further assuming
each L-value L(1/2, f ⊗ g) to be non-negative, Holowinsky and Templier [13] obtained

L
(1
2
, f ⊗ g

)
� Q1/4+ε

(
Q− η

4(1+η) +Q− 1−η
4(1+η)

)
for 0 < η < 1, where f ∈ B∗

κ(M) and g ∈ B∗
k(N,φ) with φ being an even Dirichlet character of conductor

N . Recently Ye [27] obtained

L
(1
2
, f ⊗ g

)
� Q1/4+ε

(
Q− η

2(1+η) +Q− β
2(1+η) +Q− 3β+1−η

6(1+η)

)
(1.2)

for 0 < η < 1 + 3β, where f ∈ B∗
κ(M), g ∈ B∗

k(N) or B∗
λ(N) and β = 11/4875. In this paper we are able

to prove:

Theorem 1.1. Let M be a positive square-free integer and P be a prime such that (P,M) = 1. Let

η = logP
logM . Let k ≥ 2 be an even integer. Set Q = (PM)2. Then for two newforms f ∈ B∗

κ(M) and

g ∈ B∗
k(P ) (or B∗

λ(P )) we have

L
(1
2
, f ⊗ g

)
� Q1/4+ε

(
Q− η

2(1+η) +Q− 2−15η
64(1+η)

)
. (1.3)

Compared to (1.1) and (1.2) in situations where the level N = P , the estimate (1.3) is better than the
former, and the latter whenever β < η < (2−32β)/15; while for η ≤ β the quantities in the parenthesises

of (1.1)-(1.3) have the same order of Q− η
2(1+η) .

Our approach to achieve (1.3) is to study the average of the second moment of L(1/2, f ⊗ g) over a
family of forms. The technique to treat the second moment usually involves invoking an approximate
functional equation, the Petersson trace formula and the Voronöı summation formula.

Theorem 1.2. Let M,P,Q be as in Theorem 1.1. Let h be a smooth function, compactly supported on
[1/2, 5/2] with bounded derivatives. Then for Q1/2−δ ≤ X ≤ Q1/2+ε and any newform g ∈ B∗

k(P ) (or
B∗
λ(P )) we have

∑
f∈Bκ(M)

ω−1
f

∣∣∣∣∣
∑
n

ψf (n)ψg(n)h(n/X)

∣∣∣∣∣
2

�ε,δ XPQε

(
Q2δ

P
+

1

Qδ
+Q 5

4 δ
P

15
8

M
1
4

+Q3δ P
5
4

M
1
4

)
, (1.4)

where ε, δ > 0 are arbitrary, ψf (n) (ψg(n) resp.) denotes the n-th Fourier coefficient of the form f (g

resp.) and the spectral weights are given as ωf := (4π)κ−1

Γ(κ−1) 〈f, f〉.
Our main result (1.3) is an immediate consequence of Theorem 1.2 by using the fact ωf �κ M (see

[16]).

Remark 1.3. The second moment method behaves like a harmonic detection process. One may seek the
harmonic extraction by introducing the amplifier

∑
l≤L αlψf (l) for some real sequence {αl : l ≤ L} in the

sum of (1.4). However the choice of L is closely related to the levels of the forms (see [12, Section 2] for
comparison) which in turn imposes an extra constraint on the parameter η in Theorem 1.1. In this paper
we do not exploit the amplified second moment method.

In the analytic theory of automorphic L-functions one often encounters sums of the form∑
am±bn=l

λf (m)λg(n)F (m,n)

for some nice function F , for instance, smooth and compactly supported, where f , g are two primitive
cusp forms and a, b, l are positive integers. In history these sums have been studied extensively (see for
instance the works [5, 25, 18, 8, 23, 11, 1, 3, 26]). Non-trivial bounds of them often have deep implications,
e.g. subconvexity and equidistribution (QUE). In this paper we establish the following bound for the
shifted convolution sum of a special type, explicitly determining the dependence on the levels of the
forms, which does not follow easily from any of the works in the current literature.
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Theorem 1.4. Suppose that l be a non-zero integer and X,Y ≥ 1. Let F (x, y) be a smooth function
supported on [1/2, 5/2]× [1/2, 5/2] with partial derivatives satisfying

xiyj
∂i

∂xi

∂j

∂yj
F
( x

X
,
y

Y

)
� ZZi

xZ
j
y

for some Z > 0 and Zx, Zy ≥ 1. Let k ≥ 2 be an even integer. For any newforms g1, g2 ∈ B∗
k(P ) (or

B∗
λ(P )) we define

SX,Y (l) =
∑ ∑

m=nP+l

ψg1(n)ψg2(m)F
( n

X
,
m

Y

)
.

Then we have

SX,Y (l) � (XY P )εP 1/4Z
√

ZxZy max{XP, Y }3/4 max{Zx, Zy}5/4. (1.5)

2. Preliminaries

2.1. Automorphic forms. Let k ≥ 2 be an even integer and N > 0 be an integer. Let χ be an even
Dirichlet character of conductor N . We denote by Sk(N,χ) the vector space of holomorphic cusp forms
on Γ0(N) with nebentypus χ and weight k. For any f ∈ Sk(N,χ) one has a Fourier expansion

f(z) =
∑
n≥1

ψf (n)n
k−1
2 e(nz)

for Imz > 0. Analogously we denote by Sλ(N,χ) the vector space of Maass forms on Γ0(N) with
nebentypus χ, weight 0 and eigenvalue λ = 1/4 + r2 > 1/4 (so that r ∈ R). Then for any f ∈ Sλ(N,χ)
one has a Fourier expansion

f(z) = 2
√

|y|
∑
n �=0

ψf (n)Kir(2π|ny|)e(nx),

where z = x+ iy and Kir denotes the K-Bessel function.
Sk(N) and Sλ(N) are finite dimensional Hilbert spaces which can be equipped with the Petersson

inner products

< f1, f2 >=

∫
Γ0(N)\H

f1(z)f2(z)y
k−2dxdy

and

< f1, f2 >=

∫
Γ0(N)\H

f1(z)f2(z)
dxdy

y2
,

respectively. We recall the Hecke operators {Tn} with (n,N) = 1 which satisfy the multiplicativity
relation

TnTm =
∑

d|(n,m)

χ(d)Tnm
d2

. (2.6)

The adjoint of Tn with respect to the Petersson inner products is T ∗
n = χ(n)Tn, hence Tn is normal. One

can find an orthogonal basis Bk(N,χ) (Bλ(N,χ) resp.) of Sk(N,χ) (Sλ(N,χ) resp.) consisting of common
eigenfunctions of all the Hecke operators Tn with (n,N) = 1. For each f ∈ Bk(N,χ) or Bλ(N,χ), denote
by λf (n) the n-th Hecke eigenvalue which satisfies

Tnf(z) = λf (n)f(z)

for all (n,N) = 1. From (2.6) one has

ψf (m)λf (n) =
∑

d|(n,m)

χ(d)ψf

(mn

d2

)
3



for any m,n > 1 with (n,N) = 1. In particular ψf (1)λf (n) = ψ(n) if (n,N) = 1. Therefore

λf (m)λf (n) =
∑

d|(n,m)

χ(d)λf

(mn

d2

)
(2.7)

if (mn,N) = 1.
The Hecke eigenbasis Bk(N,χ) (Bλ(N,χ) resp.) also contains a subset of newforms B∗

k(N,χ) (B∗
λ(N,χ)

resp.), those forms which are simultaneous eigenfunctions of all the Hecke operators Tn for any n ≥ 1
and normalized to have first Fourier coefficient ψf (1) = 1. The elements of B∗

k(N,χ) and B∗
λ(N,χ) are

usually called primitive forms.
When the nebentypus is trivial we remove it from the notations. Our primitive form f of level N is an

element of B∗
k(N) or B∗

λ(N). For f such a primitive form the Hecke relations (2.7) hold for all integers
n,m > 1 and it is also known (see [16]) that

|λf (p)|= p−1/2 (2.8)

for any p|N .
We will need the following general Voronöı-type summation formula which is Theorem A.4 [18].

Lemma 2.1. Let k ≥ 2 be an even integer and N > 0 be an integer. Let g ∈ B∗
k(N) (or B∗

λ(N)) be a
newform. For (a, q) = 1 set N2 := N/(N, q). If h ∈ C

∞(R×,+) is a Schwartz class function vanishing in
a neighborhood of zero, then there exists a complex number η of modulus one, which depends on a, q and
g, and a newform g	 ∈ B∗

k(N) (or B∗
λ(N)) such that

∑
n

λg(n)e

(
an

q

)
h(n) =

2πη

q
√
N2

∑
n

λg�(n)e

(
−aN2n

q

)∫ ∞

0

h(ξ)Jg

(
4π

√
nξ

q
√
N2

)
dξ

+
2πη

q
√
N2

∑
n

λg�(n)e

(
aN2n

q

)∫ ∞

0

h(ξ)Kg

(
4π

√
nξ

q
√
N2

)
dξ.

In this formula,

• if g is holomorphic of weight k then

Jg(x) = 2πikJk−1(x), Kg(x) = 0;

• if g is a Maass form with eigenvalue λ = 1/4 + r2 then

Jg(x) =
−π

sin(πir)
(J2ir(x)− J−2ir(x)), Kg(x) = 4 cosh(πr)K2ir(x).

2.2. Rankin-Selberg convolutions of forms with co-prime levels. Let N and M be two positive
square-free co-prime integers, and let k and κ be two fixed positive even integers. Let χ and φ be Dirichlet
characters modulo N and M , respectively. Given two forms f ∈ B∗

κ(M,φ), g ∈ B∗
k(N,χ) or B∗

λ(N,χ) we
consider the Rankin-Selberg convolution L-function

L(s, f ⊗ g) = L(NM)(χφ, 2s)
∑
n≥1

λf (n)λg(n)

ns
,

where L(NM)(χφ, 2s) denotes the partial Dirichlet L-function with the local factors at primes dividing
NM removed. It admits an analytic continuation to all of C and a functional equation of the form

Λ(s, f ⊗ g) =

(
NM

4π2

)s

L∞(s, f ⊗ g)L(s, f ⊗ g) = ε(f ⊗ g)Λ(1− s, f ⊗ g),

4



where according to [18]

L∞(s, f ⊗ g) = Γ

(
s+

|k − κ|
2

)
Γ

(
s+

k + κ

2
− 1

)
for g holomorphic,

L∞(s, f ⊗ g) = Γ

(
s+

κ+ 2ir − 1

2

)
Γ

(
s+

κ− 2ir − 1

2

)
for g a Maass form,

and the epsilon factor

ε(f ⊗ g) =

{
χ(−M)φ(N)η2f (M)η2g(N) if g is holomorphic and k ≥ κ,

χ(M)φ(−N)η2f (M)η2g(N) otherwise.

Here ηf (M), ηg(N) are the pseudo-eigenvalues of f , g for the Atkin-Lehner-Li operators WM , WN .

2.3. Bessel functions. We recall some properties of Bessel functions which can be found for instance
in [9, Section 7].

Lemma 2.2. Let k ≥ 2 be an even integer and N > 0 be an integer. Let g ∈ B∗
k(N) (or B∗

λ(N)) be a
newform. There exist smooth functions F±

g (x) such that

xj(F±
g )(j)(x) �j,νg

1

(1 + x)1/2

for all j ∈ N0 with νg = ±2ir or k − 1, and

Jg(x) = F+(x)eix + F−(x)e−ix.

Furthermore

Kg(x) �ε

{
(1 + |r|)ε, 0 < x ≤ 1 + π|r|;
e−xx−1/2, x > 1 + π|r|.

We will need the following two lemmas which have the flavours of [11, Lemma 2.1-2.3].

Lemma 2.3. Let k ≥ 2 be an even integer and N > 0 be an integer. Let g ∈ B∗
k(N) (or B∗

λ(N)) be a
newform. For any a, b, x, y > 0 define

I(x, y) =

∫ ∞

0

h(ξ)Jg(4πa
√

xξ)Jκ−1(4πb
√
yξ)dξ

and

I ′(x, y) =
∫ ∞

0

h(ξ)Kg(4πa
√
xξ)Jκ−1(4πb

√
yξ)dξ,

where h is a smooth function compactly supported on [1/2, 5/2] with bounded derivatives. We have

I(x, y) �j,νg |a√x− b
√
y|−j , I ′(x, y) �j,νg min

{
e−2πa

√
x, (b

√
y)−j

}
(2.9)

for any j ≥ 0. Moreover for any non-negative integers i and j

∂i

∂xi

∂j

∂yj
I(x, y),

∂i

∂xi

∂j

∂yj
I ′(x, y) �i,j,νg E (2.10)

with

E :=
1

(1 + a
√
x)1/2(1 + b

√
y)1/2

(1 + a
√
x)i(1 + b

√
y)j .

5



Proof. A change of variables, ξ = w2, gives

I(x, y) = 2

∫ ∞

0

h(w2)wJg(4πa
√
xw)Jκ−1(4πb

√
yw)dw.

Therefore we see from Lemma 2.2 that I(x, y) may be written as the sum of four similar terms, one of
them being ∫ ∞

0

e(2w(a
√
x− b

√
y))h(w2)wF+(2πa

√
xw)F−(2πb

√
xw)dw. (2.11)

Repeated integration by parts gives the required bound of I(x, y), as shown in (2.9). Repeating the
procedure one may write I ′(x, y) as the sum of two similar terms, one of them being∫ ∞

0

e(2w(b
√
y))h(w2)wKg(2πa

√
xw)F+(2πb

√
xw)dw (2.12)

which would lead to the bound of I ′(x, y) in (2.9). Differentiating (2.11), (2.12) together with Lemma
2.2 gives (2.10). �

Lemma 2.4. Let k ≥ 2 be an even integer and N > 0 be an integer. Let g ∈ B∗
k(N) (or B∗

λ(N)) be a
newform. Let P, q be positive integers. Take Q > 1 and X,Y ≥ 1. For any a, b > 0 define

IJ,J (a, b) =

∫ ∞

0

∫ ∞

0

F
( x

X
,
y

Y

)
h

(
q

Q
,
xP + l − y

PQ2

)
Jg(4πa

√
x)Jg(4πb

√
y)dxdy, (2.13)

and IJ,K(a, b) to be the integral IJ,J (a, b) with the second Bessel function Jg replaced by Kg in (2.13).

Similarly we define IK,J(a, b) and IK,K(a, b). Here h
(

q
Q , xP+l−y

PQ2

)
is the function defined in Lemma 2.5

and F is a smooth function supported on [1/2, 5/2]× [1/2, 5/2] with partial derivatives satisfying

xiyj
∂i

∂xi

∂j

∂yj
F
( x

X
,
y

Y

)
� ZZi

xZ
j
y

for some Z > 0 and Zx, Zy ≥ 1. Denote by I∗,∗ any element belonging to {IJ,J , IJ,K , IK,J , IK,K}. Then
for any non-negative integers i and j we have

I∗,∗(a, b) �i,j,νg E0 (2.14)

with

E0 :=
Q

q

ZXY

(1 + a
√
X)1/2(1 + b

√
Y )1/2

[
1

a
√
X

{
Zx +

X

qQ

}]i [
1

b
√
Y

{
Zy +

Y

PqQ

}]j
.

Moreover

I∗,∗(a, b) �ε,νg E1 (2.15)

with

E1 :=
Z
√
XYQε

ab(1 + a
√
X)1/2(1 + b

√
Y )1/2

Q

q
min

{
Zxb

√
Y , Zya

√
X
}
.

Proof. We only consider IJ,J since the proofs for IJ,K , IK,J , IK,K are similar. We change variables and
integrate by parts once with respect to x and apply Lemma 2.2 to obtain

IJ,J (a, b) �νg

Q

q

ZXY

(1 + a
√
X)1/2(1 + b

√
Y )1/2

[
1

a
√
X

{Zx +XPI}
]

(2.16)

with

I :=

∫ 5/2

1/2

∫ 5/2

1/2 2|xXP+l−yY |>qQP

1

|xXP + l − yY |dxdy.
6



Notice that (2.14) holds for i = 1 and j = 0 by using the trivial bound I � (qQP )−1. Repeated
integration by parts would then establish the result for all i and j. To prove (2.15) we replace x by a
new variable w = xXP + l − yY to get

I � (XP )−1

∫ 5/2

1/2

∫ (XP+Y+|l|)Qε

qQP/2

1

w
dwdy � (XP )−1Qε.

Repeating the argument, for y instead of x, gives (2.15). �

2.4. δ-method. We will now briefly recall a version of the circle method. The δ-symbol method was
developed in [4, 5] as variant of the circle method. The main purpose is to express δ(n, 0), the Dirac
symbol at 0 (restricted to the integers n in some given range: |n|≤ N), in terms of ‘harmonics’ e(anq ) for

some integers a, q satisfying (a, q) = 1 and q ≤ Q, with Q being any fixed positive real number. In order
to be of practical use one expects the δ-symbol method should be capable of providing an expression for
δ(n, 0) in terms of harmonics of a small moduli. However the modulus in the circle method cannot be
less than N1/2, which corresponds to using Dirichlet’s approximation theorem to produce values q ≤ Q
(see [10]). In our paper we shall exploit a modified δ-method motivated by the ‘conductor lowering
mechanism’ (see [22], [23] or [24]).

We introduce a version of circle method for the latter use. One can follow the expositions of Heath-
Brown in [10] (see also [11, Lemma 2.7 & (2.7), (2.8)]).

Lemma 2.5. For any Q > 1 there exist a positive cQ and an infinitely differentiable function h(x, y)
defined on the set (0,∞)× R such that

δ(n, 0) =
cQ
Q2

∞∑
q=1

∑∗

a mod q

e

(
an

q

)
h

(
q

Q
,
n

Q2

)
. (2.17)

The constant cQ satisfies cQ = 1+O(Q−A) for any A > 0. h(x, y) is non-zero only for x ≤ max{1, 2|y|}
and h(x, y) � x−1 for all y. Moreover

xi ∂

∂xi
h(x, y) �i x

−1 and
∂

∂y
h(x, y) = 0 (x ≤ 1, |y|≤ x/2).

When |y|> x/2 we have

xiyj
∂

∂xiyj
h(x, y) �i,j x

−1.

3. Proof of Theorem 1.4

First we write SX,Y (l) as

SX,Y (l) =
∑
n

∑
m

λg1(n)λg2(m)F
( n

X
,
m

Y

)
δ(nP + l −m, 0). (3.18)

Notice that for any positive integer K we have

δ(r, 0) = CK,rδ(r/K, 0),

where CK,r is equal to 1 or 0 according as K|r or not. Thus an application of Lemma 2.5 gives a expression
of δ(n, 0):

δ(r, 0) =
cQ

KQ2

∞∑
q=1

∑∗

a mod q

∑
b mod K

e

(
ar

qK

)
e

(
br

K

)
h

(
q

Q
,

r

KQ2

)
.

7



Here Q is the parameter appearing in (2.17), which will be determined later. Substituting the expression
above into (3.18) with r = nP + l −m and K = P we obtain

SX,Y (l) =
cQ
PQ2

∞∑
q=1

∑∗

a mod q

∑
b mod P

e

(
l(a+ qb)

qP

)∑
n

λg1(n)e

(
an

q

)

×
∑
m

λg2(m)e

(
−m(a+ bq)

qP

)
h

(
q

Q
,
nP + l −m

PQ2

)
F
( n

X
,
m

Y

)
.

(3.19)

It turns out that one needs to investigate the cancellations of the averages involving the Fourier coefficients
and the harmonics. We proceed with the argument by considering two cases according to (a+ bq, P ) = 1
or not in order to take into account the “conductor” of the sum over m in (3.19). Meanwhile one sees
that the “conductor” of the sum over n is descended to q. This is where we are getting help from the
parameter K = P (actually one can check the choice of K is optimal to make a saving).

3.1. Case 1: (a+ bq, P ) = 1. If we write q → qPα with (q, P ) = 1 for some integer α ≥ 0 we have

SX,Y (l) =
cQ
PQ2

∑
q≥1

(q,P )=1

∑∗

a mod qPα

∑
b mod P

(a+bq,P )=1

e

(
l(a+ qPαb)

qP 1+α

)

×
∑
n

λg1(n)e

(
an

qPα

)∑
m

λg2(m)e

(
−m(a+ qPαb)

qP 1+α

)
G(qPα, n,m),

(3.20)

where G(q, n,m) = h
(

q
Q , nP+l−m

PQ2

)
F
(
n
X , m

Y

)
. Now applying the Voronöı summation formula (Lemma

2.1) to sums over n and m respectively yields

SX,Y (l) =
cQ

P 2(1+α)
√
PαQ2

∑
q≥1

(q,P )=1

1

q2

∑
n

∑
m

λg1(n)λg2(m){Sα(n,m, l, q)GJ,J (qP
α, n,m)

+ Sα(n,−m, l, q)GJ,K(qPα, n,m) + Sα(−n,m, l, q)GK,J (qP
α, n,m)

+ Sα(−n,−m, l, q)GK,K(qPα, n,m)},

(3.21)

where

Sα(n,m, l, q) =
∑∗

a mod qPα

∑
b mod P

(a+bq,P )=1

e

(
l(a+ qPαb)

qP 1+α
− naPα

qPα
+

ma+ qPαb

qP 1+α

)
,

GJ,J (q, n,m) =

∫ ∞

0

∫ ∞

0

G(q, x, y)Jg

(
4π

√
xn

q
√
Pα

)
Jg

(
4π

√
ym

qP

)
dxdy

(3.22)

with Pα = P/(P, Pα), GJ,K , GK,J and GK,K are defined similarly as GJ,J .

Lemma 3.1. Let Sα(n,m, l, q) be defined as in (3.22). Then we have

S0(n,m, l, q) �ε ((m− n, q)1/2 + (m,P )1/2)(qP )1/2+ε.

Here P means PP ≡ 1 (mod q). For α ≥ 1, Sα(n,m, l, q) is zero unless the equation lx2 ≡ m mod P
satisfying (x, P ) = 1 is solvable, and in which case

Sα(n,m, l, q) �ε (nP −m, qPα)1/2(qPα)1/2+εP.

Proof. For α = 0 we have

S0(n,m, l, q) =
∑∗

a mod q

∑
b mod P

(a+bq,P )=1

e

(
l(a+ qb)

qP
− naP

q
+

ma+ qb

qP

)
=

∑∗

γ mod qP

e

(
lγ

qP
− nγP

q
+

mγ

qP

)
.
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We write γ = xP + yq with x mod q, (x, q) = 1 and y mod P, (y, P ) = 1. The last sum would be reduced

to S((m− n)P 2, l; q)S(mq2, l;P ). Using the Weil bound for individual Kloosterman sums we have

S0(n,m, l, q) �ε ((m− n, q)1/2 + (m,P )1/2)(qP )1/2+ε.

Now we consider the situation where α ≥ 1. We can write Sα(n,m, l, q) as∑∗

a mod qPα

∑
b mod P

e

(
l(a+ qPαb)

qP 1+α
− na

qPα
+

ma(1− qPαba+ qPαb)

qP 1+α

)

= 1{a:la2≡m mod P}P
∑∗

a mod qPα

e

(
la

qP 1+α
− na

qPα
+

ma

qP 1+α

)
,

where 1A : a → {0, 1} is the characteristic function of a subset A – it is equal to 1 when a ∈ A, and zero
otherwise. Let x0 (mod P ) be the solution of the equation lx2 ≡ m mod P satisfying (x, P ) = 1. Now if
we write a = x0(1 + Py) with y mod qPα−1, (y, qPα−1) = 1, then the last sum becomes

e

(
lx0

qP 1+α
− nx0

qPα
+

mx0

qP 1+α

) ∑∗

y mod qPα−1

e

(
lx0y

qPα
+

nx0(1 + Py)y

qPα−1
− mx0(1 + Py)y

qPα

)

which by completing method (see [15, Chapter 12]) is

�
(
1 +

1

P

) ∑
0≤k≤qPα

1

1 + k

∑∗

y mod qPα

e

(
(lx0 + k)y

qPα
+

nx0(1 + Py)y

qPα−1
− mx0(1 + Py)y

qPα

)

=

(
1 +

1

P

) ∑
0≤k≤qPα

1

1 + k

∑∗

y mod qPα

e

(
(lx0 + k)y

qPα
+

nx0(1 + Py)y

qPα−1
− mx0(1 + Py)y

qPα

)

=

(
1 +

1

P

) ∑
0≤k≤qPα

1

1 + k

∑∗

y mod qPα

e

(
(lx0 + k)y + (nP −m)x0 · y + P

qPα

)
.

We claim the second sum is �ε (nP − m, qPα)1/2(qPα)1/2+ε which gives the required bound of
Sα(n,m, l, q), α ≥ 1. Typically one may consider the sum

T (a, b, c; d) =
∑∗

y mod d

e

(
ay + by + c

d

)

for any a, b, c, d ∈ N. Write y = y1q + y2P
α with y1 mod Pα, (y1, P ) = 1 and y2 mod q, (y2, q) = 1. We

have
(y + P ) ≡ (P + y1q)qq + (P + y2Pα)PαPα (mod qPα),

where the first inverse is mod qPα, the second mod Pα and the third mod q. Hence by the Chinese
Remainder Theorem T (a, b, P ; qPα) = T (aP 2α, bP 2α, Pα−1; q)T (aq2, bq2, qP ;Pα). Changing the variable

y → y and then y → y − Pα−1 enable us to reduce T (aP 2α, bP 2α, Pα−1; q) to a Kloosterman sum, up

to a multiplicative factor of modulus one. Using the Weil bound gives that T (aP 2α, bP 2α, Pα−1; q) �ε

(b, q)q1/2+ε. For the second sum, by [6, Theorem 1], one has T (aq2, bq2, qP ;Pα) � (b, Pα)Pα/2 . �
Now we turn to the estimate of the integral in (3.22). By Lemma 2.4 we have the following:

Lemma 3.2. Denote by G∗,∗ any element belonging to {GJ,J , GJ,K , GK,J , GK,K}. Then G∗,∗(q, n,m) is

negligible unless n � q2Pα

X

(
Zx + X

qQ

)2
(XY P )ε, m � q2P 2

Y

(
Zy +

Y
PqQ

)2
(XY P )ε, and in which case

G∗,∗(q, n,m) �νg,ε
Z
√
XYQε( √

n

q
√
Pα

·
√
m

qP

)(
1 +

√
nX

q
√
Pα

)1/2 (
1 +

√
mY
qP

)1/2 Qq min

{
Zx

√
mY

qP
,
Zy

√
nX

q
√
Pα

}
.
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Consequently appealing to Lemma 3.1 and 3.2 we are ready to prove the required bound of SX,Y (l).

Proposition 3.3. Under Case 1 we have

SX,Y (l) � (XY P )εZP 1/4
√
ZxZy max{XP, Y }3/4 max{Zx, Zy}5/4. (3.23)

Proof. Denote by

T1 =
q2P

X

(
Zx +

X

qQ

)2

(XY P )ε, T2 =
q2P 2

Y

(
Zy +

Y

PqQ

)2
(XY P )ε,

T3 =
(qPα)2

X

(
Zx +

X

qQ

)2
(XY P )ε, T4 =

q2P 2(1+α)

Y

(
Zy +

Y

PqQ

)2
(XY P )ε.

When the parameters are such that either T1 < 1, T2 < 1 or T3 < 1, then one has arbitrary saving in
these situations. Otherwise, for α ≥ 1 by Lemma 3.1 and 3.2

SX,Y (l) � Qε

(
1

P 5/2Q

∑
q≤Q

1

q3

∑
n∼T1

∑
m∼T2

Z(XY )1/4(q2P 3/2)3/2

(nm)3/4
·
(
(m− n, q)1/2 + (m,P )1/2

)

× (qP )1/2+ε +
1

P 2(1+α)Q

∑
q≤Q/Pα

1

q3

∑
n∼T3

∑
m∼T4

Z(XY )1/4(q2P 1+2α)3/2

(nm)3/4

× (nP −m, qPα)1/2(qPα)1/2+εP

)
min

{
Zx

(
Zy +

Y

PqQ

)
, Zy

(
Zx +

X

qQ

)}

� (XY P )εZ
√

ZxZyQ
3/2+εP

(
Zx +

X

Q2

)(
Zy +

Y

PQ2

)

� (XY P )εZ
√

ZxZyQ
3/2+εP

(
max{Zx, Zy}+ max{XP, Y }

PQ2

)2

.

Choosing Q =
(

max{XP,Y }
P max{Zx,Zy}

)1/2
we derive that

SX,Y (l) � (XY P )εZP 1/4
√

ZxZy max{XP, Y }3/4 max{Zx, Zy}5/4.
�

3.2. Case 2: P |(a+ bq). It is easy to see that bq ≡ −a (mod P ). If (q, P ) = 1 we have

b ≡ −aq (mod P ).

Hence SX,Y (l) becomes

cQ
PQ2

∑
q≥1

∑∗

a mod q

e

(
laq′

q

)∑
n

λg1(n)e

(
an

q

)∑
m

λg2(m)e

(
−maq′

q

)
G(q, n,m), (3.24)

where q′ = (1 − qq)/P . One may regard the expression above without P in the multiplicative factor as
(3.20) with P = 1, up to a factor q′ co-prime with q. Repeating the process as in Case 1 we thus conclude
(3.24) is bounded by the estimate in (3.23). If P |q we have P |a. This contradicts the fact (a, q) = 1.

4. Proof of Theorem 1.2

In this section we shall follow the argument in [11] to prove Theorem 1.2. Let us put

Sg(X) =
∑

f∈Bκ(M)

ω−1
f

∣∣∣∣∣
∑
n

ψf (n)ψg(n)h(n/X)

∣∣∣∣∣
2

.
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Following the steps of the reduction of the second moment in [11, Section 3 & 4] (when it comes to
applying the Voronöı summation formula we use Lemma 2.1 instead), we deduce the following:

Lemma 4.1. Let δ > 0. For Q1/2−δ ≤ X ≤ Q1/2+ε and any newform g ∈ B∗
k(P ) (or B∗

λ(P )) we have

Sg(X) �ε,δ Qε

⎛
⎝X + PXQ−δ +

∑
M≤D≤XQ2δ

Rg,D(X)

⎞
⎠ , (4.25)

where Rg,D(X) is defined as

Rg,D(X) =
∑
n

∑
m

λg(n)h
( n

X

)
λg(m)h

(m
X

) ∑
d>0

d≡0 mod M

S(n,m; d)

c
Jκ−1

(
4π

√
nm

d

)
ηD(d)

with ηD being a smooth function supported on [D/2, 5D/2]. Moreover

Rg,D(X) �
∑

LR=P

1√
L

∑
d>0

(d,L)=1
d≡0 mod RM

ηD(d)

d

∑
bc=d

1

b
(|Σd(L; c)|+|Σ′

d(L; c)|), (4.26)

where

Σd(L; c) =
∑
n

∑
m≡nL mod c

λg(n)λg�(m)Id(n,m) (4.27)

with the function Id(n,m) being defined as

Id(n,m) = h
( n

X

)∫ ∞

0

h

(
ξ

X

)
Jκ−1

(
4π

√
nξ

d

)
Jg

(
4π

√
mξ

d
√
L

)
dξ,

and

Σ′
d(L; c) =

∑
n

∑
m+nL≡0 mod c

λg(n)λg�(m)I ′d(n,m) (4.28)

with the function I ′d(n,m) being defined as

I ′d(n,m) = h
( n

X

)∫ ∞

0

h

(
ξ

X

)
Jκ−1

(
4π

√
nξ

d

)
Kg

(
4π

√
mξ

d
√
L

)
dξ.

In (4.27) and (4.28) g	 is a newform depending on g with the same level P .

As shown in Lemma 2.3 Id(n,m) and I ′d(n,m) enjoy, at least for our needs, the same properties. They
determine the main contributions to the sums (4.27) and (4.28) respectively, which occur at n ∼ X and
m = nL+O(dL(1 + d/X)Qε). Moreover one sees that the estimate (2.10) can also be adapted to either
of them. In this sense it therefore suffices to deal only with the sum Σd(L; c) involving Id(n,m). The
argument of Σ′

d(L; c) follows similarly with that of Σd(L; c).
In what follows we shall consider Σd(L; c) from two situations: L = 1 and L = P . For L = 1 by

Lemma 2.3 we have the estimate Id(n,m) � Xmin{(d/X)1/2, 1}, whereby we obtain

Σd(1; c) � QεX
∑
n∼X

∑
m=n+O

(
d2

X Qε
)

m≡n mod c

� X2
(
1 +

d2

Xc

)
Qε

which would contribute Rg,D(X) an amount

QεX2
∑
d>0

d≡0 mod PM

ηD(d)

d

(
1 +

d

X

)
� XQ2δ+ε. (4.29)
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Next we consider the case L = P . First we treat the “zero shift”, that is, the terms satisfying m = nL =
nP in (4.27). Repeating the procedure of dealing with the case L = 1 one sees that an application of
the estimate |λg∗(nP )|= |λg∗(n)λg∗(P )|= |λg∗(n)|P−1/2 (see (2.8)) together with the bound Id(n, nP ) �
Xmin{(d/X)1/2, 1} gives that

Σd(P ; c) � X2

√
P

so that the zero shift contribution to Rg,D(X) is

� QεX2

P

∑
d>0

(d,P )=1
d≡0 mod M

ηD(d)

d
� XQε. (4.30)

We are now left with the non-zero shifts m �= nP for Σd(P ; c) which may be rewritten as∑
0�=|r|� dP

c (1+ d
X )Qε

∑
m=nP+cr

λg(n)λg�(m)Id(n,m). (4.31)

For this sum we shall estimate “trivially” by taking the absolute value of each summand in (4.31) in the
first step. We shall resort to Theorem 1.5 if the trivial estimate is not enough to achieve subconvexity.
First we write

Id(n,m) = X
∑
Y

F
( n

X
,
m

Y

)
(4.32)

by taking a smooth partition of unity, where Y runs over values 2v with v = −1, 0, 1, 2, . . . such that
m = nP + c is soluble when m ∼ Y and F (x, y) is a smooth function supported on [1/2, 5/2]× [1/2, 5/2].
By Lemma 2.3 one can show that

xiyj
∂i

∂xi

∂j

∂yj
F
( x

X
,
y

Y

)
� 1(

1 + X
d

)1/2 (
1 +

√
XY

d
√
P

)1/2
(
1 +

X

d

)i
(
1 +

√
XY

d
√
P

)j

(4.33)

for any non-negative integers i and j. Therefore it follows that the sum in (4.31) is

� X2
∑
Y

1(
1 + X

d

)1/2 (
1 +

√
XY

d
√
P

)1/2 dPc
(
1 +

d

X

)
Qε (4.34)

which is bounded by X2dPQε/c. This will contribute Rg,D(X) an amount

1√
P

∑
d>0

(d,P )=1
d≡0 mod M

ηD(d)

d
X2PQε � XP 3/2Qε. (4.35)

If d is small compared with X, d � XQ−δ say, one sees that m = nP + cr is soluble only when
Y ∼ XP . Thus (4.34) satisfies the stronger bound(

1 +
d

X

)
Xd2PQε

c

which will lead to a contribution of the magnitude

� X
√
PQε

∑
d>0

(d,P )=1
d≡0 mod M

ηD(d)

(
1 +

d

X

)
� XPQε

(
D√
PM

)
. (4.36)
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As refereed in §1 one has ωf �κ M , whence the bound Sg(X) �ε XPQε for X ≤ Q1/2+ε would

lead to the convexity bound for any individual L(f ⊗ g, 1/2). Observe that if D ≥ √
PM the bound in

(4.36) cannot beat the convexity bound barrier. We now apply Theorem 1.4 to seek another bound as in
Lemma 4.2, which would be better than XPQε if the level P is chosen properly.

Lemma 4.2. Let δ > 0. If
√
PMQ−δ ≤ D ≤ XQ2δ we have

Rg,D(X) � XPQε

(
P 15/8Q5δ/4

M1/4
+

P 5/4Q3δ

M1/4

)
. (4.37)

Proof. Let us put

SX,Y (cr) =
∑

m=nP+cr

λg(n)λg�(m)F
( n

X
,
m

Y

)
with F (x, y) being as in (4.32). Upon noting (4.33), an application of Theorem 1.4 gives that

SX,Y (cr) � (XY P )εP 1/4Z
√

ZxZy max{XP, Y }3/4 max{Zx, Zy}5/4,
where

Z =
1(

1 + X
d

)1/2 (
1 +

√
XY

d
√
P

)1/2 , Zx =

(
1 +

X

d

)
and Zy =

(
1 +

√
XY

d
√
P

)
.

Hence the contribution of the non-zero shifts to Rg,D(X) is bounded by

XP 3/4Qε
∑
d>0

(d,P )=1
d≡0 mod M

ηD(d)

d

(
1 +

d

X

)∑
Y

(XY P )εZ
√

ZxZy max{XP, Y }3/4 max{Zx, Zy}5/4. (4.38)

If
√
PMQ−δ ≤ D < X one has that Y ∼ XP , whence (4.38) reduces to

XP 3/4 · (XP )3/4Qε
∑
d>0

(d,P )=1
d≡0 mod M

ηD(d)

d

(
1 +

X

d

)5/4

� Q5δ/4+ε(XP ) · P
15/8

M1/4
.

If X ≤ D ≤ XQ2δ one has that Y � d2PQε/X, whence (4.38) reduces to

XP 3/4Qε
∑
d>0

(d,P )=1
d≡0 mod M

ηD(d)

d
max

Y� d2PQε

X

⎧⎨
⎩Y 3/4

(
1 +

√
XY

d
√
P

)9/4
⎫⎬
⎭

� XP 3/4Qε ·
(
d2P

X

)3/4 ∑
d>0

(d,P )=1
d≡0 mod M

ηD(d)

d
� Q3δ+ε(XP ) · P 5/4

M1/4
.

Combining (4.36) and (4.37) with (4.29) and (4.30) and inserting these bounds into (4.25) completes the
proof of Theorem 1.2. �
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