期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:203
Level aspect subconvexity for twisted L-functions
Article
Hou, Fei1  Chen, Bin2 
[1] Xian Univ Technol, Sch Sci, Xian 710054, Shaanxi, Peoples R China
[2] Weinan Normal Univ, Coll Math & Phys, Weinan 714099, Peoples R China
关键词: Automorphic forms;    Rankin-Selberg convolution;    Subconvexity;    Large sieve inequality;   
DOI  :  10.1016/j.jnt.2019.03.005
来源: Elsevier
PDF
【 摘 要 】

Let M be a square-free integer and P be a prime such that (M, P) = 1. We prove a new level aspect hybrid subconvexity bound for L(1/2, f circle times x) where f is a primitive (either holomorphic or Maass) cusp form of level P and chi a primitive Dirichlet character modulo M satisfying P similar to M-eta with 0 < eta < 3/2 - 3 theta, where theta is the current known approximation towards the Ramanujan-Petersson conjecture. Particularly we obtain a stronger subconvexity for max{6 theta, 1/2} < eta < (3-6 theta)/2 which has not been covered by the work of Blomer-Harcos [3]. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_03_005.pdf 406KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次