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Let M be a square-free integer and P be a prime such that 
(M, P ) = 1. We prove a new level aspect hybrid subconvexity 
bound for L(1/2, f ⊗ χ) where f is a primitive (either 
holomorphic or Maass) cusp form of level P and χ a primitive 
Dirichlet character modulo M satisfying P ∼ Mη with 0 <
η < 3/2 − 3ϑ, where ϑ is the current known approximation 
towards the Ramanujan-Petersson conjecture. Particularly we 
obtain a stronger subconvexity for max{6ϑ, 1/2} < η <
(3 −6ϑ)/2 which has not been covered by the work of Blomer-
Harcos [3].

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let f be a primitive (either holomorphic or Maass) cusp form of Hecke eigenvalues 
λf (n), level P and χ be a primitive Dirichlet character modulo M . The L-function 
attached to the twist f ⊗ χ is defined as
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L(f ⊗ χ, s) =
∞∑

n=1

λf (n)χ(n)
ns

,

at least for Re(s) sufficiently large. It is of great interest to establish a subconvexity bound 
for L(f ⊗ χ, s) when both P and M are allowed to vary. Many methods have developed 
in recent years to produce successively strengthened level aspect hybrid subconvexity for 
twisted L-functions (not merely twisted by a Dirichlet character χ) when the levels of the 
forms are varying at different rate, say satisfying P ∼ Mη, up to a constant η > 0 (see 
for instance the related works [1,3,12,14,15]). In an interesting paper Blomer and Harcos 
[3] firstly achieved a hybrid subconvexity for L-function L(f ⊗ χ, s) simultaneously in 
all parameters of the form f and the conductor of χ, invoking the idea in Bykovskii [5]. 
Particularly if one supposes P and M are co-prime positive integers, they may show that

L(1/2, f ⊗ χ) � Q 1
4+ε

(
Q− 1

8(2+η) + Q− 1−η
4(2+η)

)
(1.1)

for 0 < η < 1, where f ∈ B∗
k(P ) or B∗

λ(P ) (see §2 for definitions) and Q = PM2 is 
the size of the (arithmetic) conductor Q(f ⊗ χ) of the L-function L(s, f ⊗ χ) (see [16, 
Chapter 7]). More recently K. Aggarwal, Y. Jo and K. Nowland [1] showed that

L(1/2, f ⊗ χ) � Q
1
4−

2−5η
20(2+η)+ε (1.2)

for 0 < η < 2/5, where f ∈ B∗
k(P ) and M is a square-free positive integer.

It seems reasonable to ask how large of the exponent η to be ensured to produce a 
subconvexity, and further how to obtain a sharp subconvexity bound for a fixed η (note 
that the bound (1.2) is always weaker than (1.1)). In this paper we continue this theme 
by studying the average of the second moment of L(1/2, f ⊗ χ) over a family of forms. 
We are able to establish the following bound for the average of the second moment.

Theorem 1.1. Let M be a positive square-free integer and P be a prime such that (P, M) =
1. Let k ≥ 2 be an even integer. Let h be a smooth function, compactly supported on 
[1/2, 5/2] with bounded derivatives. Set Q = PM2. Then for X ≤ Q1/2+ε and any 
newform f ∈ B∗

k(P ) (or B∗
λ(P )) we have

∑∗

χ mod M

1
ϕ∗(M)

∣∣∣∣∣
∑
n

ψf (n)χ(n)h(n/X)

∣∣∣∣∣
2

�ε X
√
PQε

(
1
P

1
2

+ P
1
3

M
1
2−ϑ

)
, (1.3)

where ε > 0 is arbitrary, ψf (n) denotes the n-th Fourier coefficient of the form f , χ runs 
over the primitive characters modulo M , and ϕ∗(M) =

∑
ab=M ϕ(a)μ(b) is the number 

of primitive characters modulo M , with ϕ(n) being the Euler’s totient function. Here 
ϑ is the current known approximation towards the Generalized Ramanujan Conjecture, 
which is zero if f is a holomorphic cusp form, and not greater than 7/64 if f is a Maass 
cusp form.
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As an immediate consequence we obtain a subconvexity bound when P ∼ Mη with 
0 < η < 3/2 − 3ϑ.

Corollary 1.2. Let M, P, k, Q be as in Theorem 1.3. Let η = log P
log M . Then for any newform 

f ∈ B∗
k(P ) (or B∗

λ(P )) we have

L(1/2, f ⊗ χ) � Q 1
4+ε

(
Q− η

4(2+η) + Q− 3−6ϑ−2η
12(2+η)

)
. (1.4)

Remark 1.3. a) Compared to (1.1) the estimate (1.4) is stronger whenever max{6ϑ, 1/2} <
η < (3 − 6ϑ)/2. b) The second moment method behaves like a harmonic detection pro-
cess. One may seek the harmonic extraction by introducing the amplifier 

∑
l≤L αlχ(l)

for some real sequence {αl : l ≤ L} in the sum of (1.3) by the amplification method of 
[7]. However the choice of L is closely related to the level of the form f and the conduc-
tor of the character χ (see for instance [4, Section 5]) which in turn imposes an extra 
constraint on the parameter η in Theorem 1.1. One can find the moment computation 
without amplification suffices to get a better exponent when at least two of the objects 
are varying, as in the present work. See [13, Section 2] for details.

Our main general result, Theorem 1.1, will then follow from the following bound for 
the average of the shifted convolution sum, as shown in Theorem 1.4 below. In our setting 
the ‘well’ structure of the summation condition of the convolution sum enable us to get a 
saving by equipping with the large sieve relative to a trivial application of the Weil bound 
for individual Kloosterman sums. This advantage would finally make the exponent η go 
beyond 1 (it should, in view of the previous description, be 3/2 −3ϑ). Such improvement 
will allow us to average over the larger level family (increasing the degree of freedom of 
the basis of newforms) to produce a subconvexity when we are doing moment average. 
When we are faced with seeking non-trivial bounds for the shifted convolution sums, 
explicitly determining the dependence on the levels of the forms, on the other hand, is 
also one of the points, which does not follow easily from any of the current works (see 
for instance [7–9] for comparison).

Theorem 1.4. Let l be a positive integer and X, Y ≥ 1. Let F (x, y) be a smooth function 
supported on [1/2, 5/2] × [1/2, 5/2] with partial derivatives satisfying

xiyj
∂i

∂xi

∂j

∂yj
F
( x

X
,
y

Y

)
� ZZi

xZ
j
y

for some Z > 0 and Zx, Zy ≥ 1. Let k ≥ 2 be an even integer. For any non-zero integer 
r and newforms f1, f2 ∈ B∗

k(P ) (or B∗
λ(P )) we define

Sf1,f2(X,Y ) =
∑ ∑

ψf1(n)ψf2(m)F
( n

X
,
m

Y

)
. (1.5)
r �=0 m=n+rl
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Then we have

Sf1,f2(X,Y ) � (XY P )εZXY P 5/6

l1/2−ϑ
max(Zx, Zy)12

max(X,Y )1/2

min(X,Y )3/2

(
1 +

√
max(X,Y )

lP

)

(1.6)

uniformly for l, where the implied constant depends only on ε and the spectral parameters 
of the forms. In particular if X = Y and Zx = Zy the bound in (1.6) is non-trivial for 

l ≤ min
{(

X6

P 5

) 1
3(1+2ϑ)

,
(

X3

P 2

) 1
6ϑ
}

.

2. Preliminaries

2.1. Automorphic forms

We will recall some fundamental facts about cusp forms (see for instance Iwaniec’s 
book [16]). Let k ≥ 2 be an even integer and N > 0 be an integer. We denote by Sk(N)
the vector space of holomorphic cusp forms on Γ0(N) with trivial nebentypus and weight 
k. For any f ∈ Sk(N) one has a Fourier expansion

f(z) =
∑
n≥1

ψf (n)n
k−1
2 e(nz)

for Im(z) > 0. Here e(z) means e2πiz for any z ∈ C. Analogously we denote by Sλ(N) the 
vector space of Maass forms on Γ0(N) with trivial nebentypus, weight 0 and eigenvalue 
λ = 1/4 +r2 > 1/4 (so that r ∈ R). Then for any f ∈ Sλ(N) one has a Fourier expansion

f(z) = 2
√
|y|

∑
n �=0

ψf (n)Kir(2π|ny|)e(nx),

where z = x + iy and Kir denotes the K-Bessel function.
Sk(N) and Sλ(N) are finite dimensional Hilbert spaces which can be equipped with 

the Petersson inner products

〈f1, f2〉 =
∫

Γ0(N)\H

f1(z)f2(z)yk−2dxdy

and

〈f1, f2〉 =
∫

Γ0(N)\H

f1(z)f2(z)
dxdy
y2 ,

respectively. We recall the Hecke operators {Tn} with (n, N) = 1 which satisfy the 
multiplicativity relation
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TnTm =
∑

d|(n,m)

Tnm
d2 . (2.7)

The adjoint of Tn with respect to the Petersson inner products is itself, hence Tn is 
normal. One can find an orthogonal basis Bk(N) (Bλ(N) respectively) of Sk(N) (Sλ(N)
respectively) consisting of common eigenfunctions of all the Hecke operators Tn with 
(n, N) = 1. For each f ∈ Bk(N) or Bλ(N), denote by λf (n) the n-th Hecke eigenvalue 
which satisfies

Tnf(z) = λf (n)f(z)

for all (n, N) = 1. From (2.7) one has

ψf (m)λf (n) =
∑

d|(n,m)

ψf

(mn

d2

)

for any m, n > 1 with (n, N) = 1. In particular ψf (1)λf (n) = ψ(n) if (n, N) = 1. 
Therefore

λf (m)λf (n) =
∑

d|(n,m)

λf

(mn

d2

)
(2.8)

if (mn, N) = 1.
The Hecke eigenbasis Bk(N) (Bλ(N) respectively) also contains a subset of newforms 

B∗
k(N) (B∗

λ(N) respectively), those forms which are simultaneous eigenfunctions of all 
the Hecke operators Tn for any n ≥ 1 and normalized to have first Fourier coefficient 
ψf (1) = 1. The elements of B∗

k(N) and B∗
λ(N) are usually called primitive forms.

We will need the following general Voronoï-type summation formula which is Theorem 
A.4 [18].

Lemma 2.1. Let k ≥ 2 be an even integer and N > 0 be an integer. Let f ∈ B∗
k(N)

(or B∗
λ(N)) be a newform. For (a, q) = 1 set N2 := N/(N, q). If h ∈ C∞(R×,+) is a 

Schwartz class function vanishing in a neighbourhood of zero, then there exists a complex 
number � of modulus one, which depends on a, q and f , and a newform f� ∈ B∗

k(N)
(or B∗

λ(N)) such that

∑
n

λf (n)e
(
an

q

)
h(n) = 2π�

q
√
N2

∑
n

λf�(n)e
(
−aN2n

q

) ∞∫
0

h(ξ)Jf
(

4π
√
nξ

q
√
N2

)
dξ

+ 2π�
q
√
N2

∑
n

λf�(n)e
(
aN2n

q

) ∞∫
0

h(ξ)Kf

(
4π

√
nξ

q
√
N2

)
dξ.

In this formula,
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• if f is holomorphic of weight k then

Jf (x) = 2πikJk−1(x), Kf (x) = 0.

• if f is a Maass form with eigenvalue λ = 1/4 + r2 then

Jf (x) = −π

sin(πir) (J2ir(x) − J−2ir(x)), Kf (x) = 4 cosh(πr)K2ir(x).

2.2. A Wilton-type bound

We have the following Wilton-type bound involving the level of the cusp forms (see for 
instance [24, Lemma 2.1]). The uniform estimate for exponential sums associated with 
f in term of the sup-norm ‖ f ‖∞ was first proved in [9]. For any f ∈ B∗

k(N) (or B∗
λ(N)) 

with square-free level N , it shown in [10] that ‖ f ‖∞� N1/3+ε for any ε > 0.

Lemma 2.2. Let X ≥ 2 and h be a smooth function, compactly supported on [1/2, 5/2]
with bounded derivatives. Then for any α ∈ R and any newform f ∈ B∗

k(N) (or B∗
λ(N)) 

with square-free level N , we have
∑
n≤X

λf (n)e(nα)h
( n

X

)
� X

1
2N

1
3 (XN)ε,

where the implied constant depends on ε and the parameter k (or λ).

2.3. Bessel functions

We recall some properties of Bessel functions which can be found in the Appendix of 
[4] and [15, Section 2].

Lemma 2.3. For any complex number s we have

(xsJs(x))′ = xsJs−1(x), (xsKs(x))′ = −xsKs−1(x).

Denote by Hs the Js or Ks. Then for any a > 0

d
dx

(
a
√
x
)s+1

Hs+1(a
√
x) = ±(a2/2)

(
a
√
x
)s

Hs(a
√
x), (2.9)

where the sign ± is positive if Hs = Js, and negative if Hs = Ks. Moreover for non-
negative integers j there exist polynomials Qi, i ≤ j of degree i such that

xjH(j)
s (a

√
x) = Qj(s)(a

√
x)jHs−j(a

√
x) + Qj−1(s)(a

√
x)s−j+1Hj−1(a

√
x)

+ · · · + Q0(s)Hs(a
√
x). (2.10)
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Lemma 2.4. Let k ≥ 2 be an even integer. For any newform f ∈ B∗
k(N) (or B∗

λ(N)) and 
non-negative integers j we have

xj(Jf )(j)(x) �j,k
x

(1 + x)3/2

if f ∈ B∗
k(N), and

xj(Jf )(j)(x) �j,r
1

(1 + x)1/2

if f ∈ B∗
λ(N). Furthermore

Kf (x) �ε

{
(1 + |r|)ε, 0 < x ≤ 1 + π|r|;
e−xx−1/2, x > 1 + π|r|.

Lemma 2.5. Let k ≥ 2 be an even integer and r > 0 be an integer. Let P, q be positive 
integers. Take Q > 1 and X, Y ≥ 1. Let E(x, y) as in (3.19). For any a, b > 0 and 
newforms f1, f2 ∈ B∗

k(N) (or B∗
λ(N)) define

IJ,J(a, b) =
∞∫
0

∞∫
0

E(x, y)Jf1(4πa
√
x)Jf2(4πb

√
y)dxdy, (2.11)

and IJ,K(a, b) to be the integral IJ,J(a, b) with the second Bessel function Jf1 (resp. Jf2) 
replaced by Kf1 (resp. Kf2) in (2.11). Similarly we define IK,J (a, b) and IK,K(a, b). De-
note by I∗,∗ any element belonging to {IJ,J , IJ,K , IK,J , IK,K}. Then for any non-negative 
integers i and j we have

I∗,∗(a, b) �i,j,νf1 ,νf2
E0 (2.12)

with

E0 := ZXY(
1 + a

√
X
)1/2 (

1 + b
√
Y
)1/2

[
Zx

a
√
X

]i [
Zy

b
√
Y

]j
,

where νf1 , νf2 = ±2ir or k − 1.

Proof. We only consider IJ,J since the proofs for IJ,K , IK,J , IK,K are similar. Integrating 
by parts once in x and together with the property (2.9) gives

IJ,J(a, b) = ± 1
2πa

∞∫ ∞∫ (√
x
∂

∂x
E(x, y) − νf1E(x, y)

2
√
x

)
Jνf1+1(4πa

√
x)Jνf2

(4πb√y)dxdy.

0 0
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Note that E(i,j)(x, y) �i,j
Zi

xZ
j
y

XiY j . Thus combining with Lemma 2.4 one arrives at (2.12)
with i = 1 and j = 0. Repeated integration by parts would then establish (2.12) for all 
i and j. �
2.4. A large sieve inequality

Let S(m, n; c) be the classical Kloosterman sum. We have the following form of the 
large sieve inequality (see [6, Theorem 9 ]):

Lemma 2.6. Let r, q, D be positive integers with q and D co-prime. Let C, M, N be pos-
itive real numbers and g be real-valued infinitely differentiable function with support in 
[M, 2M ] × [N, 2N ] × [C, 2C] such that

∂i+j+k

∂mi∂nj∂ck
g(m,n, c) �i,j,k

Zi+j+k

M iN jCk

for all i, j, k ≥ 0. Let

Xq :=
√
qMN

C
√
r

.

Then for any ε > 0 and complex sequences a = {am}, b = {bn} one has

∑
m

∑
n

∑
c mod D
(c,r)=1

ambn
S(qm,±nr; c)

c
g(m,n, c)

�ε (qDMNZC)εqϑ
√
r
1 + X−2ϑ

q

Z + Xq

(
Z + Xq +

√
M

rD

)

×
(
Z + Xq +

√
N

rD

)
Z9‖a‖2‖b‖2.

2.5. Circle method

We will now briefly recall a version of the circle method which has been investigated 
by Jutila (see [19] and [20]). In this paper we will employ Jutila’s variation of the circle 
method with an important new input - the ‘conductor lowering mechanism’ (see [21], 
[22] or [23]). As shows in Lemma 2.7, Jutila’s circle method provides a smooth bump 
function of q as q → ∞, which is more convenient for us to implement the large sieve 
method later.

Lemma 2.7. Let Q ≥ 2 be a large parameter to be chosen later. Let w be a non-oscillating 
smooth function supported on [Q/2, 5Q/2] with values in [0, 1], which equals to 1 on 
[Q, 2Q] and satisfies that w(i) �i Q

−i for any i ≥ 0. For any set S ⊂ R, let IS denote 
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the associated characteristic function, i.e. IS(x) = 1 for x ∈ S and 0 otherwise. We also 
set

τ := Q−1, L :=
∞∑
q=1

w(q)ϕ(q) (2.13)

and define

I(α) = 1
2τL

∞∑
q=1

w(q)
∑∗

a mod q

I[ aq −τ, aq +τ ](α).

Assume that L �ε Q
2−ε for any ε > 0. We then have

1∫
0

|1 − I(α)|2 dα �ε Q
−1+ε.

3. Proof of Theorem 1.4

For any given integer l ≥ 2 and X, Y ≥ 1, denote by Sf1,f2(X, Y ; r) the inner sum 
over n, m in (1.5). Hence we write Sf1,f2(X, Y ) as

Sf1,f2(X,Y ) =
∑
r

Sf1,f2(X,Y ; r), (3.14)

where clearly r satisfies r � max(X, Y )/l. Appealing to δ(n, 0), the Dirac symbol at 0, 
one may write

Sf1,f2(X,Y ; r) =
∑
n

∑
m

λf1(n)λf2(m)F
( n

X
,
m

Y

)
δ(n−m + rl, 0). (3.15)

Notice that for any positive integer K we have

δ(τ, 0) = CK,τδ(τ/K, 0),

where CK,τ is equal to 1 or 0 according as K|τ or not. We then have

δ(τ, 0) = 1
K

1∫
0

∑
b mod K

e

(
bτ

K

)
e
(
α
τ

K

)
dα.

Thus with the option that τ = n − m + rl and K = P we obtain a approximation to 
Sf1,f2(X, Y ; r) by Lemma 2.7:
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S̃f1,f2(X,Y ; r) = 1
P

1∫
0

∑
b mod P

∑
n

∑
m

λf1(n)λf2(m)F
( n

X
,
m

Y

)
e

(
b(n−m + rl)

P

)

× I(α)e
(
α
n−m + rl

P

)
dα.

(3.16)

Lemma 3.1. We have

Sf1,f2(X,Y ; r) = S̃f1,f2(X,Y ; r) + Of1,f2,ε

(
ZX1/2Y P 1/3ZxZy(XY P )ε√

Q

)
. (3.17)

Proof. By partial summation it follows that

∣∣Sf1,f2(X,Y ; r) − S̃f1,f2(X,Y ; r)
∣∣

≤ 1
XY P

∑
b mod P

∞∫
0

∞∫
0

1∫
0

∣∣∣F (1,1)
( x

X
,
y

Y

)∣∣∣ · |1 − I(α)|

×

∣∣∣∣∣∣
∑
n≤x

λf1(n)e (n(α + b)/P )

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑
m≤y

λf2(m) (−m(α + b)/P )

∣∣∣∣∣∣ dαdxdy.

For the middle sum we have 
∑

n≤x λf1(n)e(αn) �ε x
1/2P 1/3(XP )ε by Lemma 2.2. Thus 

applying Cauchy’s inequality we now arrive at the expression on the right hand side is

≤ ZZxZyP
1/3+ε

X1/2Y

∞∫
0

∞∫
0

∣∣∣F (1,1)
( x

X
,
y

Y

)∣∣∣ ·
⎛
⎝ 1∫

0

|1 − I(α)|2dα

⎞
⎠

1/2

×

⎛
⎜⎝

1∫
0

∣∣∣∣∣∣
∑
m≤y

λf2(m)e(−m(α + b)/P )

∣∣∣∣∣∣
2

dα

⎞
⎟⎠

1/2

dxdy

which is bounded by

� (XY P )εZX1/2Y P 1/3ZxZy√
Q

by Lemma 2.7, together with the basic estimate 
∑

n≤y λ
2
f2

(n) � y. �
Now we proceed towards the estimation of S̃f1,f2(X, Y ; r). Using the definition of the 

approximating function I(α), we get
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S̃f1,f2(X,Y ; r) = 1
PL

∞∑
q=1

w(q)
∑∗

a mod q

∑
b mod P

e

(
rl(a + qb)

qP

)∑
n

λg1(n)e
(
n(a + bq)

qP

)

×
∑
m

λg2(m)e
(
−m(a + bq)

qP

)
E(n,m),

(3.18)

where

E(x, y) = F
( x

X
,
y

Y

) 1
2τ

τ∫
−τ

e(α(x− y + rl)/P )dα (3.19)

with τ, L being as in (2.13). We write γ = a + bq, so that S̃f1,f2(X, Y ; r) reduces to

1
PL

∞∑
q=1

w(q)
∑

γ mod qP
(γ,q)=1

e

(
rlγ

qP

)∑
n

λf1(n)e
(
nγ

qP

)∑
m

λf2(m)e
(
−mγ

qP

)
E(n,m).

Our focus thus turns to investigating the cancellations of the averages involving the 
Fourier coefficients and the harmonics. The Voronoï summation formula would be put 
into use in an effort to obtain the transformation formula with the Kloosterman sums and 
smooth weights involved. To construct individual Kloosterman sums we would identify 
two situations (γ, P ) = 1 or not. We will now proceed by considering these two cases.

3.1. Case 1: (γ, P ) = 1

In this case one has (γ, qP ) = 1. Thus S̃f1,f2(X, Y ; r) becomes

S̃f1,f2(X,Y ; r) = 1
PL

∑
q

∑∗

γ mod qP

e

(
rlγ

qP

)∑
n

λf1(n)e
(
nγ

qP

)

×
∑
m

λf2(m)e
(
−mγ

qP

)
G(q, n,m),

where G(q, n, m) = w(q)E(n, m). Applying the Voronoï summation formula (Lemma 2.1) 
to sums over n and m respectively yields, up to a constant factor,

S̃f1,f2(X,Y ; r) = 1
P 3L

∑
q≥1

1
q2

∑
n

∑
m

λf1(n)λf2(m){S(rl,m− n; qP )GJ,J(q, n,m)

+ S(rl, n + m; qP )GJ,K(q, n,m) + S(rl,−n−m; qP )GK,J(q, n,m)
+ S(rl, n−m; qP )GK,K(q, n,m)},

(3.20)

where
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GJ,J(q, n,m) =
∞∫
0

∞∫
0

G(q, x, y)Jf1

(
4π

√
xn

qP

)
Jf2

(4π√ym

qP

)
dxdy,

GJ,K , GK,J and GK,K are defined similarly as GJ,J . Moreover by Lemma 2.5 one easily 
finds that every element belonging to {GJ,J , GJ,K , GK,J , GK,K} is negligibly small unless

n � Z2
xq

2P 2

X
(XY P )ε, m �

Z2
yq

2P 2

Y
(XY P )ε (3.21)

for any ε > 0.
We may write S̃f1,f2(X, Y ; r) as a sum of four terms S̃±,±

f1,f2
(X, Y ; r) say, depending 

on the signs of m, n in the Kloosterman sums in (3.20). Correspondingly we denote by 
S̃±,±
f1,f2

(X, Y ) the contributions of these terms when summing with respect to r, upon 
recalling (3.14). In what follows we only consider the case where r > 0 for the sums 
S̃±,±
f1,f2

(X, Y ), the argument for the situation where r < 0 following similarly. We only 

treat S̃+,−
f1,f2

(X, Y ), upon noting that the argument of the other terms (that is, S̃−,+
f1,f2

, 
S̃+,+
f1,f2

and S̃−,−
f1,f2

) can follow similarly with it.
By dyadic subdivision we may decompose GJ,J(q, n, m) in the q variable such that

GJ,J(q, n,m) =
∑
Q�≥1

GJ,J;Q�(q, n,m) (3.22)

with GJ,J;Q� being a smooth function of q supported on q ∼ Q�, where Q� runs through 
the powers of 2 independently and satisfies that Q/2 ≤ Q� ≤ 5Q/2. Analogously, for the 
sum over r in S̃+,−

f1,f2
(X, Y ), we introduce another smooth partition of unity and break 

the sum into dyadic segments of size R. Hence we recast S̃+,−
f1,f2

(X, Y ) as

S̃+,−
f1,f2

(X,Y ) = 1
PL

∑
Q�

∑
n

∑
m

λf1(n)λf2(m)
∑

c mod P

∑
r

S(rl,m− n; c)
c

Ξ(m,n, r, c),

(3.23)

where

Ξ(m,n, r, c) = GJ,J;Q�(c/P, n,m)ηR(r)/c. (3.24)

Here ηR is a smooth function supported on [R/2, 5R/2]. Notice that R must be of size 
at most max(X, Y )/l by the congruence condition and m ≤ S1, n ≤ S2 with

S1 := (ZxQ
�P )2

X
(XY P )ε and S2 := (ZyQ

�P )2

Y
(XY P )ε

for any ε > 0. Write m − n = h. Then we split the inner quadruple sum in (3.23) as the 
“diagonal term” D0 and the “off-diagonal” term D1, where
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D0(X,Y,Q�) =
∑
n

∑
m=n

λf1(n)λf2(m)
∑

c mod P

∑
r

S(rl, 0; c)
c

Ξ(m,n, r, c),

and

D1(X,Y,Q�) =
∑

c mod P

∑
r

∑
h�=0

S(rl, h; c)
c

∑
m−n=h

λf1(n)λf2(m)Ξ(m,n, r, c).

We now turn to the estimations of these two terms as follows.

3.1.1. Treatment of D0
Using the identity for Ramanujan sum

S(n, 0; c) =
∑

c′|(n,c)

μ(c/c′)
c′

so that we write c = c′c′′ with c′|lr and P |c′c′′. Changing variable r → c′r/(c′, l) the 
inner sum over c in D0 can be rewritten as

∑
c′′

μ(c′′)
c′′

∑
P

(P,c′′) |c′
Ξ(n, n, c′r/(c′, l), c′c′′),

whence

D0 � ZXY R(S1 + S2)
PQ�

∑
c′′

μ(c′′)
c′′

∑
P

(P,c′′) |c
′

c′c′′∼P

(P, c′′)
P

� ZXY RQ� max(Zx, Zy).

(3.25)

This contributes S̃+,−
f1,f2

(X, Y ) an amount

� (XY P )εZXY max(Zx, Zy) max(X,Y )
PQl

, (3.26)

upon noting that L � Q2−ε.

3.1.2. Treatment of D1
Using the idea in [2] (namely partial summation) to separate the variables m, n in-

volving the Fourier coefficients λf1(n), λf2(m) and the smooth weight Ξ(m, n, r, c), one 
might rewrite D1 as

D1(X,Y,Q�) =
∞∫
D1(y)dy, (3.27)
1



F. Hou, B. Chen / Journal of Number Theory 203 (2019) 12–31 25
where

D1(y) =
∑

c mod P

∑
r

∑
h�=0

bh,y
S(rl, h; c)

c
gy(r, h, c) (3.28)

with

bh,y :=
∑
m≤y

m−n=h

λf1(n)λf2(m) and gy(r, h, c) = ∂

∂y
Ξ(y, y − h, r, c). (3.29)

As in (3.22), one may proceed by decomposing gy(r, h, c) in the h and c variables dyad-
ically writing

gy(r, h, c) =
∑

H,C≥1
gy;H,C(r, h, c), (3.30)

with gy;H,C being a smooth function of h and c, supported on h ∼ H and c ∼ C,
respectively. Recalling (3.24), it is clear from Lemma 2.5 that gy;H,C and all its partial 
derivatives are very small unless

C ∼ PQ�, y ≤ S1, H ≤ S1 + S2. (3.31)

In such truncated range we may thus deduce the bound for the partial derivatives of Ξ
as follows.

Lemma 3.2. Under (3.31), for any non-negative integers i, j, k, l and any ε > 0 one has

minjrkclΞ(i,j,k,l)(m,n, r, c) � (XY P )εE (Zx + Zy)i+j
, (3.32)

where E := ZXY
C .

Proof. Applying the recurrence relation (2.10) in Lemma 2.3 to the m and n variables 
one easily see that

minjrkclΞ(i,j,k,l)(m,n, r, c) � ∂k

∂rk
ηR(r)

∞∫
0

∞∫
0

∂l

∂cl

(
G(c/P, x, y)

c

)
W i

1W
j
2

× Jνf2−i

(4π√ym

c

)
Jνf1−j

(
4π

√
xn

c

)
dxdy,

where W1 := 4π√ym

c and W2 := 4π
√
xn

c . Note that the partial derivative ∂l

∂cl
G(c/P, x, y) �l

C−l, whence
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minjrkclΞ(i,j,k,l)(m,n, r, c) � (XY P )εE
(

1 +
√
nX

C
+

√
mY

C

)i+j

� (XY P )εE (Zx + Zy)i+j
. �

Consequently we infer that the smooth weight gy(r, h, c) in (3.30) satisfies

rihjckg(i,j,k)
y (r, h, c) = rihjck

{
Ξ(j+1,0,i,k)(y, y − h, r, c) + Ξ(j,1,i,k)(y, y − h, r, c)

}

� E(XY P )ε

y
(Zx + Zy)i+j

for all i, j, k ≥ 0 and any ε > 0. Now an application of Lemma 2.6 gives that

D1(y) �
E(XY P )ε

y
lϑ

(
1 +

√
lRH

C

)−1−2ϑ

× Z̃9

(
Z̃ +

√
lRH

C
+

√
R

P

)(
Z̃ +

√
lRH

C
+

√
H

P

)
R

1
2 ‖ by ‖2,

where Z̃ = Zx + Zy and meanwhile one sees that by Lemma 2.2

‖ by ‖2� P 1/3y1/2S
1/2
2 ,

so that (3.27) shows that

∑
Q�≥1

D1(X,Y,Q�)

� sup
Q�≤Q

max
H≤S1+S2

C∼Q�

P 1/3lϑE(XY P )ε
(

1 +
√
lRH

C

)−1−2ϑ

× Z̃9

(
Z̃ +

√
lRH

C
+
√

R

P

)(
Z̃ +

√
lRH

C
+
√

H

P

)
R1/2S

1/2
1 S

1/2
2

� (XY P )εZXY P−2/3lϑR1/2
(
1 +

√
R/P

)
Z̃10 sup

Q�≤Q

1
Q�

·

× max
H≤ {max(Zx,Zy)Q�P}2

min(X,Y ) (XY P )ε

(
1 +

√
lRH

PQ�

)−2ϑ (
Z̃ +

√
lRH

PQ�
+

√
H

P

)
S

1/2
1 S

1/2
2

� (XY P )εZXY P 11/6Q2

l1/2−ϑ

(
1 +

√
max(X,Y )/lP

)

× max(Zx, Zy)12
max(X,Y )1/2

min(X,Y )3/2
.
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This will thus contribute S̃+,−
f1,f2

(X, Y ) in (3.23) an amount, upon recalling (3.23) and 
L � Q2−ε,

� (XY P )εZXY P 5/6

l1/2−ϑ
max(Zx, Zy)12

max(X,Y )1/2

min(X,Y )3/2

(
1 +

√
max(X,Y )

lP

)
. (3.33)

3.2. Case 2: P |γ

In this case, changing variable γ to γP , we are led to the equality S̃f1,f2(X, Y ; r) =
S̃

f1,f2

(X, Y ; r) − S̃�
f1,f2

(X, Y ; r) with

S̃

f1,f2

(X,Y ; r)

:= 1
PL

∑
q

∑∗

γ mod q

e

(
rlγ

q

)∑
n

λf1(n)e
(
nγ

q

)∑
m

λf2(m)e
(
−mγ

q

)
G(q, n,m),

and

S̃�
f1,f2

(X,Y ; r)

:= 1
PL

∑
P |q

∑∗

γ mod q

e

(
rlγ

q

)∑
n

λf1(n)e
(
nγ

q

)∑
m

λf2(m)e
(
−mγ

q

)
G(q, n,m).

Correspondingly we denote by S̃

f1,f2

(X, Y ) and S̃�
f1,f2

(X, Y ) the contributions when 
summing with respect to r outside for these two terms. It suffices to treat S̃


f1,f2
(X, Y ; r), 

the argument of S̃�
f1,f2

(X, Y ; r) will follow similarly. To do so we follow the line of the 
argument of dealing with S̃f1,f2(X, Y ; r) in Case 1.

Hence after using the Voronoï summation formula one sees that the estimation of 
S̃

f1,f2

(X, Y ; r) is boiled down to bounding

1
P 2L

∑
q≥1

1
q2

∑
n

∑
m

λg1(n)λg2(m)S(rl, P (m− n); q)G

J,J(q, n,m), (3.34)

where

G

J,J(q, n,m) =

∞∫
0

∞∫
0

G(q, x, y)Jf1

(
4π

√
xn

q
√
P

)
Jf2

(4π√ym

q
√
P

)
dxdy.

We observe that G

J,J(q, n, m) is negligibly small unless

n � Z2
xq

2P (XY P )ε, m �
Z2
yq

2P
(XY P )ε (3.35)
X Y



28 F. Hou, B. Chen / Journal of Number Theory 203 (2019) 12–31
for any ε > 0. Decomposing dyadically the r variable r ∼ R, and the q variable q ∼ Q�

of the sum G

J,J(q, n, m) such that G


J,J(q, n, m) =
∑

Q�≥1 G


J,J;Q�(q, n, m), we see that

S̃

f1,f2

(X,Y ) = 1
P 2L

∑
Q�

∑
n

∑
m

λf1(n)λf2(m)
∑
c

∑
r

S(rl, P (m− n); c)
c

Ξ
(m,n, r, c),

(3.36)

where Ξ
(m, n, r, c) = G

J,J;Q�(c, n, m)ηR(r)/c. Here the smooth function ηR(r) is as 

before, R ≤ max(X, Y )/l, and Q/2 ≤ Q� ≤ 5Q/2.
Argue as in Case 1, one can split the inner quadruple sum in (3.36) as two parts (that 

is, the “diagonal term” and the “off-diagonal” term) D

0 and D


1, say. For D

0, one might 

verify that it is dominated by the upper-bound of D0 in (3.25), thereby the contribution 
to S̃


f1,f2
(X, Y ) is less than the bound (3.26). For D


1, one has (analogous to (3.27))

D

1 =

∞∫
1

D

1(y)dy,

where

D

1(y) =

∑
c

∑
r

∑
h�=0

bh,y
S(rl, hP ; c)

c
g
y(r, h, c)

with the function g
y denoting the gy-function associated with Ξ
 in (3.29). By dyadic 
subdivision one sees that the integrand D


1(y) is

� max
H′,C′

∑
c

∑
r

∑
h�=0

bh,y
S(rl, hP ; c)

c
g
y;H′,C′(r, h, c),

where g
y;H′,C′(r, h, c) is a smooth function supported on h ∼ H ′, c ∼ C ′, and satisfies 
that

g
y(r, h, c) =
∑

H′,C′≥1
g
y;H′,C′(r, h, c).

Now an application of Lemma 2.5 shows that g
y;H′,C′ and all its partial derivatives are 
very small unless

C ′ ∼ Q�, y ≤ S′
1, r ∼ R, H ′ ≤ S′

1 + S′
2,

where

S′
1 = (ZxQ

�)2P (XY P )ε and S′
2 = (ZyQ

�)2P (XY P )ε

X Y
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for any ε > 0. Moreover it can be easily seen that

rihjck
∂i+j+k

∂ri∂hj∂ck
g
y;H′,C′(r, h, c) � E ′(XY P )ε

y
(Zx + Zy)i+j

with E ′ = ZXY/C ′ for any non-negative integers i, j, k and any ε > 0. Hence, under 
these circumstances above, Lemma 2.6 together with Lemma 2.2 may yield

∑
Q�≥1

D

1(X,Y,Q�)

� sup
Q�≤Q

max
H′≤S′

1+S′
2

C′≤Q�

P 1/3E ′(XY P )εlϑ
√
P

(
1 +

√
lRH ′

C ′
√
P

)1−2ϑ

× Z̃9

(
Z̃ +

√
lRH ′

C ′
√
P

+
√

R

P

)(
Z̃ +

√
lRH ′

C ′
√
P

+
√

H ′

P

)
R1/2S′

1
1/2

S′
2
1/2

� (XY P )εZXY P 11/6Q2

l1/2−ϑ
max(Zx, Zy)12

max(X,Y )1/2

min(X,Y )3/2

(
1 +

√
max(X,Y )

lP

)
(3.37)

which is of the same order as that for D1(X, Y, Q�). We thus conclude the contribution 
from the “off-diagonal” term D


1 to S̃

f1,f2

(X, Y ) in (3.36) is bounded by the estimate 
(3.33) in Case 1.

Combining with (3.17), (3.26) and (3.33) and choosing Q to be sufficiently large, say 
Q = (XY PM)100, Theorem 1.4 follows immediately.

4. Proof of Theorem 1.1

In this section we are concerned about the sum

∑∗

χ mod M

1
ϕ∗(M)

∣∣∣∣∣
∑
n

ψf (n)χ(n)h(n/X)

∣∣∣∣∣
2

, (4.38)

where X ≤ Q1/2+ε for any ε > 0, and χ runs over the primitive characters modulo M . 
Note that the trivial bound of (4.38) is O(X2/M) which would lead to the convexity 
bound for any individual L(1/2, f⊗χ). To get cancellation we expand the square deriving 
that

(4.38) =
∑
n

ψ2
f (n)h2

( n

X

)
+ 1

ϕ∗(M)
∑
l|M

ϕ(l)μ
(
M

l

)

×
∑
r �=0

∑
m=n+rl

ψf (n)ψf (m)h
( n

X

)
h
(m
X

)
, (4.39)

where we have used the relation
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∑∗

χ mod M

χ(m)χ(n) =
∑

ab=M
a|(m−n)

ϕ(a)μ(b)

for any m, n with (mn, M) = 1 (see for instance [11]). The first term on the right hand 
side of (4.39) is trivially Oε(XQε) for any ε > 0; while by Theorem 1.4 the second term 
is bounded by

� 1
ϕ∗(M)

∑
l|M

ϕ(l) (XP )εXP
5
6

l
1
2−ϑ

(
1 +

√
X

lP

)
� (XP )εXP

5
6

ϕ∗(M)
∑
l|M

ϕ(l)
l
1
2−ϑ

� X
√
PQε · P

1
3

M
1
2−ϑ

,

and hence Theorem 1.1.

5. Proof of Corollary 1.2

Let us recall that the approximate functional equation (see for instance [17, Chapter 
5]) implies that

L(1/2, f ⊗ χ) � Qε sup
X≤Q1/2+ε

|S(X)|√
X

,

where S(X) are sums of the type

S(X) =
∑
n

λf (n)χ(n)h
( n

X

)

for some smooth function h compactly supported on [1/2, 5/2] with bounded derivatives. 
By Theorem 1.1 we pick up only one term when summing over the family of the primitive 
characters getting

sup
X≤Q1/2+ε

S(X)√
X

� Q 1
4+ε

(
1
P

1
4

+ P
1
6

M
1
4−ϑ

2

)
.

Replacing all occurrences of P by Mη we obtain Corollary 1.2.
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