期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:217
Polynomial analogue of the Smarandache function
Article
Li, Xiumei1  Sha, Min2 
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词: Erdos problem;    Factorial;    Smarandache function;    Polynomials over finite fields;   
DOI  :  10.1016/j.jnt.2020.05.015
来源: Elsevier
PDF
【 摘 要 】

In the integer case, the Smarandache function of a positive integer n is defined to be the smallest positive integer k such that n divides the factorial k!. In this paper, we first define a natural order for polynomials in F-q[t] over a finite field F-q and then define the Smarandache function of a non-zero polynomial f is an element of F-q[t], denoted by S(f), to be the smallest polynomial g such that f divides the Carlitz factorial of g. In particular, we establish an analogue of a problem of Erdos, which implies that for almost all polynomials f, S(f) = t(d), where d is the maximal degree of the irreducible factors of f . (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_05_015.pdf 672KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次