期刊论文详细信息
AIMS Mathematics | |
On the Sum of Unitary Divisors Maximum Function | |
关键词: : Unitary Divisor function; Smarandache function; Fermat prime; | |
DOI : 10.3934/Math.2017.1.96 | |
学科分类:数学(综合) | |
来源: AIMS Press | |
【 摘 要 】
It is well-known that a positive integer $d$is called a unitary divisorof an integer $n$ if $d|n$ and gcd$\left(d,\frac{n}{d}\right)=1$. Divisor function $\sigma^{*}(n)$denote the sum of all such unitary divisors of $n$.In this paper we consider the maximum function $U^{*}(n)=\max\{k\in\mathbb{N}:\sigma^{*}(k)|n\}$and study the function $U^{*}(n)$ for $n=p^{m}$,where$p$ is a prime and $m\geq 1$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201901218555091ZK.pdf | 261KB | download |