期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:132
Counting rational points on smooth cyclic covers
Article
Heath-Brown, D. R.1  Pierce, Lillian B.1 
[1] Math Inst, Oxford OX1 3LB, England
关键词: Rational points;    Cyclic covers;    Power sieve;    Character sums;   
DOI  :  10.1016/j.jnt.2012.02.010
来源: Elsevier
PDF
【 摘 要 】

A conjecture of Serre concerns the number of rational points of bounded height on a finite cover of projective space Pn-1. In this paper, we achieve Serre's conjecture in the special case of smooth cyclic covers of any degree when n >= 10, and surpass it for covers of degree r >= 3 when n > 10. This is achieved by a new bound for the number of perfect r-th power values of a polynomial with nonsingular leading form, obtained via a combination of an r-th power sieve and the q-analogue of van der Corput's method. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2012_02_010.pdf 222KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次