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A conjecture of Serre concerns the number of rational points of
bounded height on a finite cover of projective space Pn−1. In this
paper, we achieve Serre’s conjecture in the special case of smooth
cyclic covers of any degree when n � 10, and surpass it for covers
of degree r � 3 when n > 10. This is achieved by a new bound
for the number of perfect r-th power values of a polynomial with
nonsingular leading form, obtained via a combination of an r-th
power sieve and the q-analogue of van der Corput’s method.
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1. Introduction

Let F (x) ∈ Z[x1, . . . , xn] be an irreducible form of degree mr with r � 2, m � 1, such that the
projective hypersurface defined by F (x) = 0 is smooth. In this paper we will investigate the number
of integer solutions to

yr = F (x1, . . . , xn) (1)

with |xi | � B . Our interest stems from the fact that an upper bound for the number of such points
provides an upper bound for the number of rational points on cyclic covers of Pn−1.
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The density of rational points on covers of projective space is the subject of a well-known con-
jecture of Serre. Precisely, given a finite cover φ : X → Pn−1 over Q, where n � 2, define the counting
function

NB(φ) = #
{

P ∈ X(Q): H
(
φ(P )

)
� B

}
.

Here H is the usual multiplicative height function on Pn−1. Using a sieve method, Serre [13] proved
that there exists γ < 1 such that

NB(φ) � B(n−1)+ 1
2 (log B)γ , (2)

as long as the degree of φ is at least two. In fact, however, Serre conjectures that

NB(φ) � Bn−1(log B)c, (3)

for some c, for covers of any degree r � 2 (see Theorems 3, 4 of Chapter 13 in [13]).
Several results are known in this direction. Broberg [1] has applied Heath-Brown’s determinant

method [7] to prove results for covers of P1 and P2. In the case of P1, Broberg proves that for
φ : X → P1 of degree r � 2,

NB(φ) �φ,ε B2/r+ε .

For φ : X → P2 of degree r � 3, Broberg proves that

NB(φ) �φ,ε B2+ε,

and if φ is of degree 2, then

NB(φ) �φ,ε B9/4+ε .

These results nearly prove Serre’s conjecture (3) for n = 2,3.
Recently, Munshi [11] considered the case in which φ is a smooth cyclic cover of Pn−1, given by an

equation of the type (1) with F a nonsingular form. In this situation he proves that for all n � 2, one
has

NB(φ) �φ Bn− n
n+1 (log B)

n
n+1 . (4)

Note that if n � 2, this improves on (2), and even approaches Serre’s conjecture in the limit as n → ∞.
Unpublished results of Salberger on the dimension growth conjecture [7, Conjecture 2] imply the

truth of Serre’s conjecture with (log B)c replaced by Bε for covers φ given by (1) with F a form of
precisely degree r, for any r � 2. But note that while (3) is as good as one can hope for in complete
generality, one might expect an estimate of the shape

NB(φ) � Bn−m(r−1)(log B)c

for covers of Munshi’s type, under favorable circumstances. Thus Serre’s conjecture probably does not
reflect the whole truth in this area.

In this paper, we again start from the foundation of Munshi’s approach: given a form F as above,
Eq. (1) defines a variety X in weighted projective space P(m,1, . . . ,1), where the first coordinate y
has weight m and the coordinates x1, . . . , xn have weight 1. The variety X can now be regarded
as a cyclic r-sheeted cover of Pn−1, given explicitly by the map φ : X → Pn−1 that takes the point
(y, x1, . . . , xn) to (x1, . . . , xn). Thus our attention turns to counting perfect r-th power values of the
form F (x1, . . . , xn) with |xi | � B .
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For convenience, we employ a smooth non-negative weight w :Rn → R such that w � 1 on the
unit cube [−1/2,1/2]n , is supported in [−1,1]n , and satisfies the differential inequality

∣∣∣∣ ∂α

∂xα
w(x)

∣∣∣∣ �α 1,

for all multi-indices α = (α1, . . . ,αn). Define the normalized weight function

w B(x) = w(x/B), (5)

so that w B is supported in the box B = [−B, B]n and satisfies the differential inequalities

∣∣∣∣ ∂α

∂xα
w B(x)

∣∣∣∣ �α B−|α|,

where |α| = α1 + · · · + αn . We then define the counting function

Nw,B(F ) =
∑
y∈Z

∑
x∈Zn

F (x)=yr

w B(x), (6)

with the aim of proving upper bounds of the form

Nw,B(F ) � Bn−δ,

for some δ > 0 independent of the degree of F .
The counting function NB(φ) associated to the cyclic cover φ : X → Pn−1, where X is defined

by (1), satisfies the relation

NB(φ) � Nw,2B(F ).

Munshi employed the square sieve, adapted to count perfect r-th powers, in order to count solutions
to (1). This method ultimately requires one to estimate mixed character sums, for which bounds
Munshi employed bounds of Deligne [3] and Katz [9,10]. We also use a version of the power sieve,
but we sieve over certain almost-primes, instead of primes, and this allows us to apply the q-analogue
of van der Corput’s method; a similar combination has been used previously in [12,8].

With no extra effort we can handle equations of the form (1) in which F is a general polynomial f ,
not necessarily homogeneous, whose leading form is nonsingular. Ultimately, we prove the following
theorem for the counting function Nw,B( f ) defined as in (6) for solutions to the equation

yr = f (x1, . . . , xn). (7)

Theorem 1. Let f (x) ∈ Z[x1, . . . , xn] be a polynomial of degree d � 3, and assume that its leading form
is nonsingular. Then for any r � 2, the counting function Nw,B( f ) for the number of solutions to (7) satis-
fies

Nw,B( f ) �
{

Bn−3n/(2n+10)(log B)2, n � 8,

Bn−n(n−2)/(6n+4)(log B)2, 2 � n � 8,

where the implied constant depends on f , d, n.
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The reader should recall that if f is a polynomial of degree d then its leading form is defined to
be the form composed of all those terms in f with degree exactly d.

This theorem fails to hold for d = 2. That the method of proof fails to hold is visible from the
inapplicability of Proposition 2, which requires deg f � 3. But in fact the statement of the theorem
is also false for d = 2 and n > 10, since it is well known that there are � Bn−1 values x ∈ [−B, B]n

for which x2
1 + · · · + x2

n is a square. (This follows from Theorems 5, 6 and 8 of Heath-Brown [6], for
example.)

As an immediate corollary, we have:

Theorem 2. Let φ : X → Pn−1 be a smooth finite cyclic cover given by Eq. (1) with F a nonsingular form of
degree mr. Suppose either that φ has degree r � 3, or that r = 2 and m � 2. Then

NB(φ) �
{

Bn−3n/(2n+10)(log B)2, n � 8,

Bn−n(n−2)/(6n+4)(log B)2, 2 � n � 8.

In the case r = 2, m = 1, Theorem 1 no longer applies directly, but in this case the function F
in (1) is a quadratic form, and it is well known that Nw,B(F ) �F Bn−1 log B . (See Theorems 5–8 of
Heath-Brown [6], for example.) Assembling this with the relevant result of Theorem 2 for r = 2, we
therefore have the following result for all smooth finite covers of degree 2 given by (1):

Theorem 3. Let φ : X → Pn−1 be a smooth finite cover of degree 2, given by Eq. (1) with F nonsingular.
Then

NB(φ) �

⎧⎪⎨
⎪⎩

Bn−1(log B)2, n � 10,

B9−27/28(log B)2, n = 9,

Bn−n(n−2)/(6n+4)(log B)2, 2 � n � 8.

We therefore see that, for cyclic covers of any degree with F nonsingular, we can achieve Serre’s
conjecture (3) for n � 10, and indeed surpass it for n > 10 and degree r � 3. Moreover we improve
on Munshi’s bound (4) for n � 8.

There is some prospect of a better result if one could treat the sum T (h) in (24) without splitting
into residue classes k (mod q1). If this were possible we would expect a gain of q1/2

1 at this stage.
What would be required is an estimate of the shape

∑
x (mod p)

χ1
(

f (x) + g(x)
)
χ2

(
f (x)

)
ep(c · x) � pn/2

in which f (x) and g(x) are polynomials in n variables, having smooth leading forms, and in which
deg( f ) > deg(g) � 2. Katz [10] proves related results, but his theorems appear not to cover the case
required here.

2. The power sieve

We begin by formulating the sieve inequality we will use to count integer solutions to (7). The
method has its origins in the “square sieve” of Heath-Brown [4]. Following the presentation of Mun-
shi, we define a character that detects perfect r-th powers, in analogy to the Legendre symbol used
to detect perfect squares. For any prime p, since F∗

p is a cyclic group, there is a non-canonical iso-
morphism

θp :F∗
p → μp−1
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onto the set μp−1 of (p − 1)-th roots of unity in C∗ . For each p ≡ 1 (mod r), fix such a θp . On the

other hand, for such p, for every element a ∈ F∗
p , the quantity a

p−1
r is a well-defined r-th root of

unity. Thus we can define a primitive Dirichlet character modulo p by setting

χp(n) = θp
(
n̄

p−1
r

)
for (n, p) = 1 and χp(n) = 0 for p | n. Note that if n is such that (n, p) = 1 and n = mr for some m,
then

χp(n) = χp
((

m̄r) p−1
r

) = 1,

so that χp detects r-th powers, as desired (with the possibility of over-counting). We will require
characters to composite moduli, so for q = p1 · · · pk with primes p1, p2, . . . , pk ≡ 1 (mod r), we define

χq(n) = χp1(n)χp2(n) · · ·χpk (n).

Then it still remains true that for (n,q) = 1 such that n = mr we have χq(n) = 1, although now we
may be over-counting r-th powers even more significantly.

We now describe an r-th power sieve using the characters χq; we have specialized the statement
of the following lemma to suit our particular needs, but a more flexible formulation may be found
in [12] (stated there for the case r = 2, but easily generalized to r � 2).

Lemma 1. Let χq be the multiplicative character modulo q defined as above. Let A = {uv: u ∈ U , v ∈ V}
where U and V are disjoint sets of primes satisfying p ≡ 1 (mod r). Let A = #A, U = #U , and V = #V , so
that A = U V . Furthermore, assume that V 3 � A. Let ω be a non-negative weight such that ω(n) = 0 for
|n| � exp(min(U , V )). Then

∑
n 	=0

ω
(
nr) � A−1

∑
n

ω(n) + A−2
∑

v,v ′∈V

∑
u 	=u′∈U

∣∣∣∣∑
n

ω(n)χuv(n)χu′ v ′(n)

∣∣∣∣
+ U A−2

∑
v 	=v ′∈V

∣∣∣∣∑
n

ω(n)χv (n)χv ′(n)

∣∣∣∣. (8)

We will refer to the terms on the right hand side of the r-th power sieve (8) respectively as the
trivial leading term, the main sieve, and the prime sieve. To prove the lemma, consider

Σ =
∑

n

ω(n)

∣∣∣∣ ∑
q∈A

χq(n)

∣∣∣∣2

.

Each n is summed with non-negative weight, and in particular, if n = mr 	= 0 and ω(n) 	= 0, then

∑
q∈A

χq(n) =
∑
q∈A

χq
(
mr) =

∑
q∈A

(q,m)=1

1 � A −
∑
q∈A

(q,m) 	=1

1 � A.

The last step follows since ω(n) is non-zero only if |n| < exp(min(U , V )), so that p(m) � min(U , V ) =
o(A), where p(m) denotes the number of distinct prime divisors of m. Thus

Σ � A2
∑
n 	=0

ω
(
nr). (9)



1746 D.R. Heath-Brown, L.B. Pierce / Journal of Number Theory 132 (2012) 1741–1757
But also

Σ =
∑

q,q′∈A

∑
n

ω(n)χq(n)χq′(n)

=
∑
q∈A

∑
n

ω(n)χq(n)χq(n) +
∑

q 	=q′∈A
(q,q′)=1

∑
n

ω(n)χq(n)χq′(n)

+
∑

q 	=q′∈A
(q,q′) 	=1

∑
n

ω(n)χq(n)χq′(n). (10)

The first term in (10) is bounded above by A
∑

n ω(n). The second term in (10) will belong to
the main term in the sieve. The last term in (10) may be broken into two subsums S(U) + S(V),
where

S(U) =
∑
v∈V

∑
u 	=u′∈U

∑
n

ω(n)χuv (n)χu′ v(n)

and

S(V) =
∑
u∈U

∑
v 	=v ′∈V

∑
n

ω(n)χuv(n)χuv ′(n).

The sum S(U) is simply included in the main sieve term, but S(V) requires a different approach. We
split it into two further pieces, writing:

S(V) =
∑
u∈U

∑
v 	=v ′∈V

∑
n

u�n

ω(n)χv (n)χv ′(n)

= U
∑

v 	=v ′∈V

∑
n

ω(n)χv (n)χv ′(n) −
∑
u∈U

∑
v 	=v ′∈V

∑
n

u|n
ω(n)χv (n)χv ′(n)

= M(V) − E(V),

say. The term M(V) now gives rise to the third term in (8), the prime sieve. The error term E(V) can
be bounded above in absolute value to give

∣∣E(V)
∣∣ �

∑
u∈U

∑
v 	=v ′∈V

∑
n 	=0
u|n

ω(n) � V 2
∑
n 	=0

ω(n)p(n),

where as usual p(n) denotes the number of distinct prime divisors of n. By assumption, if ω(n) 	= 0
for some n 	= 0, then p(n) � min(U , V ). Thus

∣∣E(V)
∣∣ � V 3

∑
ω(n),
n
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which is dominated by the trivial leading term as long as V 3 � A. Thus, under this assumption, we
have shown that

|Σ | � A
∑

n

ω(n) +
∑

v,v ′∈V

∑
u 	=u′∈U

∣∣∣∣∑
n

ω(n)χuv(n)χu′ v ′(n)

∣∣∣∣ + U
∑

v 	=v ′∈V

∣∣∣∣∑
n

ω(n)χv(n)χv ′(n)

∣∣∣∣.
The result of the lemma then follows by comparison with (9).

We will apply the r-th power sieve using the sets

U = {
primes u ≡ 1 (mod r): Q α < u � 2Q α

}
, (11)

V = {
primes v ≡ 1 (mod r): Q 1−α < v � 2Q 1−α

}
, (12)

where Q = Bδ for some δ > 0, and the exponent α is a real parameter satisfying 2/3 � α < 1; these
parameters will be chosen later. Note in particular that under these conditions, V 3 � A, and we may
assume that the sieving primes u and v do not divide r.

Recall the smooth weight function w B(x) = w(x/B) given in (5). We will define the sieve weight
by

ω(n) =
∑
x∈Zn

f (x)=n

w B(x).

Then

Nw,B( f ) � ω(0) +
∑
n 	=0

ω
(
nr). (13)

We need to handle separately the contribution to Nw,B( f ) arising from terms with f (x) = 0. There
are many estimates in the literature covering this situation. For example Heath-Brown [5, Theorem 2]
gives a bound O (Bn−3+15/(n+5)), which is adequate for Theorem 1.

For the remainder of (13), the leading term in the sieve has upper bound

A−1
∑

n

ω(n) � Q −1(log Q )2
∑

x

w B(x) � Bn Q −1(log Q )2. (14)

If we take Q = Bδ , we therefore see that this contributes O (Bn−δ(log B)2) to Nw,B( f ).
Our principal task is to estimate the main sieve term, namely

∑
n

ω(n)χuv (n)χu′v ′(n) =
∑
x∈Zn

w B(x)χuv
(

f (x)
)
χu′v ′

(
f (x)

)
=

∑
x∈Zn

w B(x)χ∗
q1

(
f (x)

)
χ∗

q2

(
f (x)

)
, (15)

where for convenience we have defined q1 = uu′ to be the product of the “large” primes u, u′ , and
q2 = v v ′ to be the product of the “small” primes. Moreover we have set

χ∗
q1

(n) = χu(n)χu′(n) and χ∗
q2

(n) = χv(n)χv ′(n). (16)

In fact, for the prime sieve term we shall need to consider a similar sum with q1 being prime. We
therefore prove the following more general result for weighted character sums of the form (15).
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Proposition 1. Let q1 and q2 be coprime integers and suppose that q1 is either prime or a product p1 p2 of
primes satisfying p1 < p2 < 2p1 . Write p = q1 if q1 is prime, or p = p1 if q1 = p1 p2 . Let χq1 and χq2 be
multiplicative characters modulo q1 and q2 respectively, and suppose that χq1 is non-principal. Define

T (q1,q2) =
∑
x∈Zn

w B(x)χq1

(
f (x)

)
χq2

(
f (x)

)
, (17)

where B � q2 . Then

T (q1,q2) � f Bn/2q1/2
1 qn/2

2 + Bn/2q(n+2)/4
1 + Bn p−(n−2)/4. (18)

We will apply this result to the main sieve with q1, q2 each being a product of two primes (not
necessarily distinct in the case of q2), and to the prime sieve with q1, q2 being distinct primes.
Theorem 1 will then follow, as we will show in Section 4.

3. The q-analogue of van der Corput’s method

We begin our proof of Proposition 1 by applying the q-analogue of van der Corput’s method. The
sum T (q1,q2) involves a character to modulus q1q2, and the effect of our version of van der Corput’s
method is to produce a sum involving a character with a smaller modulus, namely q1. To do this we
take H = [B/q2] and let H denote the set of integer n-tuples in [1, H]n , so that #H = Hn . Then

Hn T (q1,q2) =
∑
h∈H

∑
x

w B(x + q2h)χq1

(
f (x + q2h)

)
χq2

(
f (x + q2h)

)

=
∑

x∈[−B−Hq2,B−q2]n

χq2

(
f (x)

) ∑
h∈H

w B(x + q2h)χq1

(
f (x + q2h)

)
.

Applying Cauchy–Schwarz,

H2n
∣∣T (q1,q2)

∣∣2 � Σ1Σ2, (19)

where

Σ1 =
∑

x∈[−B−Hq2,B−q2]n

∣∣χq2

(
f (x)

)∣∣2
,

Σ2 =
∑

x
( f (x),q2)=1

∣∣∣∣ ∑
h∈H

w B(x + q2h)χq1

(
f (x + q2h)

)∣∣∣∣2

.

It will be convenient to drop the condition that ( f (x),q2) = 1 in Σ2; by positivity this will still
produce an upper bound. Then, expanding the resulting sums in Σ2, we have

Σ2 �
∑

x

∣∣∣∣ ∑
h∈H

w B(x + q2h)χq1

(
f (x + q2h)

)∣∣∣∣2

=
∑

h1∈H

∑
h2∈H

S(h1,h2)

where

S(h1,h2) =
∑

χq1

(
f (x + q2h1)

)
χq1

(
f (x + q2h2)

)
w B(x + q2h1)w B(x + q2h2).
x
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We then see that S(h1,h2) = S(h1 − h2,0), and hence that

Σ2 �
∑

h1∈H

∑
h2∈H

S(h1 − h2,0)

=
∑

h∈H0

n∏
j=1

(
H − |h j|

)
S(h,0)

� Hn
∑

h∈H0

∣∣∣∣∑
x

χq1

(
f (x + q2h)

)
χq1

(
f (x)

)
w B(x + q2h)w B(x)

∣∣∣∣,
where H0 = [−H, H]n . We now further split Σ2 into the single term with h = (0, . . . ,0), which we
will call Σ2A , and the remainder of the sum over h ∈H0, h 	= 0, which we will call Σ2B .

Our goal is to give upper bounds for Σ1 and Σ2. The first admits a trivial bound: clearly,

Σ1 � Bn. (20)

Note that as we apply a trivial bound to this term, which is the only sum whose modulus is q2, we
do not need to assume that q2 is square-free. (This is what enables us to treat S(U) as part of the
main sieve in Lemma 1, but not S(V).)

Similarly, we bound Σ2A trivially as

Σ2A � Hn
∑
x∈Zn

(
w B(x)

)2 � Hn Bn. (21)

Combining (20) and (21) in (19), we have now shown that

T (q1,q2) � H−nΣ
1/2
1 (Σ2A + Σ2B)1/2 � H−n Bn/2(Hn Bn + Σ2B

)1/2
,

whence

T (q1,q2) � Bn/2qn/2
2 + B−n/2qn

2Σ
1/2
2B . (22)

We now require a nontrivial upper bound for Σ2B . We may write

Σ2B � Hn
∑

h∈H0
h	=0

∣∣T (h)
∣∣, (23)

where

T (h) =
∑

k (mod q1)

χq1(k)
∑
x∈Zn

f (x+q2h)−kf (x)≡0 (mod q1)
( f (x),q1)=1

w B,h(x). (24)

Here we have set w B,h(x) = w B(x + q2h)w B(x).
In order to bound T (h), we shall consider a general sum of the form

S =
∑
x∈Zn

q|h(x), (g(x),q)=1

W (x/L)
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in which q is either prime or a product p1 p2 of primes satisfying p1 < p2 < 2p1. We suppose that
h(x) and g(x) are integral polynomials in x = (x1, . . . , xn), with deg(h) � deg(g) = d, where d � 3. We
shall take the weight function W (x) to be smooth and supported on [−1,1]n , and we shall write �

for the maximum of the moduli of all partial derivatives of W with order at most n + 1.
Under these assumptions we shall estimate S , using information on the behavior of h(x) and g(x)

modulo the prime factors of q. Let G(x) be the leading form for g(x), so that G(x) has degree d. We
will require G(x) to be nonsingular modulo every prime factor p of q. We shall assume further that
either the leading form for h(x) is a constant multiple of G(x) or that the degree of h(x) is strictly
less than d. It follows that there is exactly one value γ modulo p for which h(x) − γ g(x) has degree
less than d, when considered over Fp . If H(x) ∈ Fp[x] is the leading form for h(x) − γ g(x) we shall
require H to have degree at least 2, and we write s(h, g; p) for the dimension of the singular locus of
the variety H(x) = 0 in An(Fp).

In the situation above, the leading form of ah(x) + bg(x) will have a singular locus of dimension
at most s(h, g; p), for any (a,b) ∈ F2

p − {(0,0)}. In particular, if s(h, g; p) = 0 it follows from the
fundamental theorem of Deligne [3] that

∑
x (mod p)

ep
(
ah(x) + bg(x) + v · x

) �n,d pn/2. (25)

Using this bound we shall ultimately establish in Section 5 the following result.

Proposition 2. Adopt the assumptions above, and let p = q if q is prime, or p = p1 if q = p1 p2 . Then if L � 1
and n � 2 we have

S = q−2φ(q)
∑
x∈Zn

W (x/L) + O n,d
(
�Lsq(n−s)/2) + O n,d

(
�Ln p(s−n+2)/2q−1). (26)

Here we have set s = s(h, g;q) if q is prime, or

s = min
(
s(h, g; p1), s(h, g; p2)

)
if q = p1 p2 .

In our application � will be O n,d(1). However since our proof of Proposition 2 uses an induction
in which the weight W varies, we have found it clearer to include � in the error estimates above.

We apply Proposition 2 to the innermost sum in (24) with q = q1,

h(x) = f (x + q2h) − kf (x), g(x) = f (x),

W (x) = w(x + q2h)w(x), and L = B . Note that W (x) is then supported on a cube of side 2, and
so � �n,d 1. Note also that the condition that the leading form G(x) of g(x) is nonsingular modulo
every prime factor of q1 is satisfied, provided that B � 1. Conveniently, since the main term in (26) is
independent of k, its total contribution to (24) when summed over k is zero. In order to estimate Σ2B

via (23) we need to understand how

s = s(h, g; p) = s
(

f (x + q2h) − kf (x), f (x); p
)

varies as we change h. The leading form of f (x + q2h) − kf (x) − γ f (x), taken over Fp , can only have
degree less than d in the case k+γ = 1, in which case the terms of degree d−1 are q2h ·∇ F (x), where
F (x) is the leading form of f . Thus we may interpret s(h, g; p) as the dimension of the singular locus
of the variety h · ∇ F (x) = 0 in An(Fp). Our next lemma provides the necessary information about
this.
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Lemma 2. Suppose that F (x) ∈ Fp[x1, . . . , xn] is a nonsingular form of degree d, and let H be a positive integer.
Then if 0 � s � n, the number of non-zero h ∈ [−H, H]n for which the variety h ·∇ F (x) = 0 has singular locus
of affine dimension s is O n,d(Hn−s + Hn p−s).

We will prove this in Section 6. It follows immediately from Lemma 2 that the number of non-
zero h ∈ H0 for which s(h, g;q1) = s will be O n,d(Hn−s + Hnq−s

1 ) if q1 is a prime. On the other
hand, if q1 = p1 p2 with p1 < p2 < 2p1 then the number of h with min(s(h, g; p1), s(h, g; p2)) = s
will be O n,d(Hn−s + Hn p−s) where p = p1 or p2. Thus in either case we may write the bound as
O n,d(Hn−s + Hn p−s), in the notation of Proposition 2. The error terms in (26) therefore contribute
to (23) a total of

�n,d q1 Hn
∑

0�s�n

(
Hn−s + Hn p−s)(Bsq(n−s)/2

1 + Bn p(s−n+2)/2q−1
1

)
.

Each summand takes the form XY s as a function of s and is therefore maximal either at s = 0 or
s = n. From s = 0 we get a contribution

�n,d q1 Hn(Hn + Hn)(qn/2
1 + Bn p−(n−2)/2q−1

1

)
�n,d H2nq(n+2)/2

1 + H2n Bn p−(n−2)/2,

while for s = n we obtain

�n,d q1 Hn(1 + Hn p−n)(Bn + Bn pq−1
1

)
�n,d Hn Bnq1 + H2n Bn p−nq1.

We therefore conclude that an overall bound for Σ2B in (23) is

Σ2B �n,d H2nq(n+2)/2
1 + H2n Bn p−(n−2)/2 + Hn Bnq1.

Proposition 1 now follows from (22) on recalling that H = [B/q2].

4. Bounding the sieve terms

We are now ready to apply Proposition 1 to bound the main sieve and the prime sieve in (13) and
prove Theorem 1. The main sieve is bounded above by

A−2
∑

v,v ′∈V

∑
u 	=u′∈U

∣∣∣∣∑
n

ω(n)χuv(n)χu′ v ′(n)

∣∣∣∣ � sup
v,v ′∈V

sup
u 	=u′∈U

∣∣T (
uu′, v v ′)∣∣,

where T (uu′, v v ′) is defined as in (17) with q1 = uu′ , q2 = v v ′ , and the characters χ∗
q1

, χ∗
q2

as defined
in (16). According to the definitions (11) and (12) for the sieving sets U and V , Proposition 1 shows
that the above is

� f Bn/2 Q n−(n−1)α + Bn/2 Q (n+2)α/2 + Bn Q −(n−2)α/4.

We choose α = 2/3 so as to match the first two terms above, giving a bound

� f Bn/2 Q (n+2)/3 + Bn Q −(n−2)/6 (27)
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for the main sieve term. This is subject to the condition q2 � B , for which it suffices to have
4Q 2/3 � B .

We now turn to the prime sieve, given in (8) as

U A−2
∑

v 	=v ′∈V

∣∣∣∣∑
n

ω(n)χv(n)χv ′(n)

∣∣∣∣ � U V 2 A−2 sup
v 	=v ′∈V

∣∣T (
v, v ′)∣∣

� U−1 sup
v 	=v ′∈V

∣∣T (
v, v ′)∣∣,

where T (v, v ′) is again defined as in (17) but with respect to characters χv , χv ′ with prime moduli.
Since v and v ′ are each of order Q 1−α = Q 1/3 we get the immediate bound

�n,d U−1{Bn/2 Q (n+1)/6 + Bn/2 Q (n+2)/12 + Bn Q −(n−2)/12}
�n,d Q −2/3(log Q )

{
Bn/2 Q (n+1)/6 + Bn Q −(n−2)/12}.

On combining this bound with (14) and (27) and inserting the result into Lemma 1, we find that

∑
n 	=0

ω
(
nr) � f Bn Q −1(log Q )2 + Bn/2 Q (n+2)/3 + Bn Q −(n−2)/6

+ Q −2/3(log Q )
{

Bn/2 Q (n+1)/6 + Bn Q −(n−2)/12}
� f (log Q )2{Bn(Q −1 + Q −(n−2)/6 + Q −2/3−(n−2)/12) + Bn/2 Q (n+2)/3}.

The optimal choice of Q will be

Q =
{

B3n/(2n+10), n � 8,

B3n/(3n+2), 2 � n � 8,

yielding bounds

� f Bn−3n/(2n+10)(log B)2

and

� f Bn−n(n−2)/(6n+4)(log B)2,

respectively. Theorem 1 then follows.

5. Proof of Proposition 2

Our treatment of Proposition 2, which is essentially a version of Poisson summation, is motivated
by the argument used by Heath-Brown [5, Theorem 3], and employs induction on s. We therefore
begin by establishing the base case for the induction, in which s = 0. We split the values of x into
residue classes modulo q and use the Poisson Summation Formula to obtain

S =
∑

z (mod q)
q|h(z), (g(z),q)=1

∑
u∈Zn

W

(
z + qu

L

)

=
(

L

q

)n ∑
n

Ŵ

(
Lv

q

)
Sq(v), (28)
v∈Z
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where

Sq(v) =
∑

z (mod q)
q|h(z), (g(z),q)=1

eq(v · z).

We may estimate

Ŵ (x) =
∫
Rn

W (y)e(−x · y)dy

by integrating by parts n + 1 times with respect to y j , say. This shows that Ŵ (x) �n �|x j |−n−1, and
since j is arbitrary we may conclude that

Ŵ (x) �n �|x|−n−1, for |x| � 1; (29)

for |x| � 1, we will employ the trivial bound Ŵ (x) �n �.
When q = p1 p2 the sum Sq(v) satisfies a multiplicativity relation

Sq(v) = S p1(v)S p2(v).

Moreover if p is prime then

S p(v) =
∑

p|h(z)

ep(v · z) −
∑

p|h(z),g(z)

ep(v · z)

= p−1
∑

a (mod p)

∑
z (mod p)

ep
(
ah(z) + v · z

) − p−2
∑

a,b (mod p)

∑
z (mod p)

ep
(
ah(z) + bg(z) + v · z

)
.

Since we are assuming that s = 0, the Deligne estimate (25) applies when a 	= 0, for the first sum
above, and for (a,b) 	= (0,0) for the second. We therefore have

S p(v) = (
p−1 − p−2) ∑

z (mod p)

ep(v · z) + O n,d
(

pn/2).
It follows that

S p(0) = φ(p)pn−2 + O n,d
(

pn/2) (30)

and that S p(v) = O n,d(pn/2) for p � v. Using the multiplicativity relation, we now see by (29) that
terms in (28) with v 	= 0, v coprime to q contribute

�n,d

(
L

q

)n

qn/2
∑

v∈Zn−{0}

∣∣∣∣Ŵ
(

Lv

q

)∣∣∣∣
�n,d Lnq−n/2

∑
v∈Zn−{0}

�min

{
1,

(
q

L|v|
)n+1}

�n,d Lnq−n/2�

(
q

L

)n

�n,d �qn/2.
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If q = p1 p2 then the terms with p1 | v but p2 � v have Sq(v) � qn and hence contribute

�n,d

(
L

q

)n

qn
∑

v∈Zn−{0}
p1|v

∣∣∣∣Ŵ
(

Lv

q

)∣∣∣∣

�n,d Ln
∑

u∈Zn−{0}
�min

{
1,

(
q

Lp1|u|
)n+1}

�n,d Ln�

(
q

p1L

)n

�n,d �qn/2,

and similarly if p2 | v but p1 � v. We therefore deduce that

S =
(

L

q

)n

Sq(0)
∑
v∈Zn

q|v

Ŵ

(
Lv

q

)
+ O n,d

(
�qn/2).

However (30) yields Sq(0) = φ(qn−1) + O n,d(qn/2) if q is prime and similarly Sq(0) = φ(qn−1) +
O n,d(q(3n−2)/4) if q = p1 p2. Moreover

∑
v∈Zn

q|v

Ŵ

(
Lv

q

)
=

∑
u∈Zn

Ŵ (Lu) = L−n
∑

u∈Zn

W
(
L−1u

) � �.

The case s = 0 of the proposition then follows.
When n = 2 and s = 1 or 2, the proposition is immediate. To see this we observe that the poly-

nomial h(x) cannot vanish identically modulo a prime divisor p of q, by our initial assumption that
h(x) − γ g(x) has degree at least 2, but strictly less than d. We then estimate S via the following
lemma.

Lemma 3. Suppose that q is either prime or the product p1 p2 of primes p1 < p2 < 2p1 . Suppose k � n and
that for p = q (in the first case) or for p = p1 and p = p2 (in the second) we are given a variety V p ⊆ An(Fp)

of dimension k and degree at most D. Then if τp is the natural map from Z to Fp , we have

#
{

x ∈ Zn ∩ [−R, R]n: τp(x) ∈ V p for p | q
} �n,D Rnqk−n + Rk.

This is a special case of Lemma 4 of Browning and Heath-Brown’s work [2], in which we take
W = An(Q), l = n, and ki = k in their notation.

We apply the lemma with n = 2 and k = 1 to give S �n,d L2q−1 + L in our situation. We also have

q−nφ
(
qn−1) ∑

x∈Zn

W (x/L) � L2q−1.

We therefore see that these are dominated by the error terms in (26) if n = 2 and s = 1 or 2.
We turn now to the induction argument, for which we assume n � 3 and s � 1. The induction

step will reduce both n and s by 1, giving us a case for which we already know that the proposition
holds. The plan is to choose a suitable matrix M ∈ SLn(Z), and to work with polynomials hM,c(y)

and gM,c(y) in n − 1 variables y = (y1, . . . , yn−1) defined by setting
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hM(x) = h(Mx) and hM,c(y) = hM(y, c),

and similarly for g . If we also set

W M(x) = W (Mx) and W M,c(y) = W M(y, c)

we then find that

S =
∑
c∈Z

∑
y∈Zn−1

q|hM,c(y), (gM,c(x),q)=1

W M,c(y/L).

In order to apply the induction hypothesis we use the following lemma to provide a suitable ma-
trix M .

Lemma 4. Suppose that q and the polynomials h and g are as in the preamble to Proposition 2. Then there is
a matrix M ∈ SLn(Z) with entries bounded in modulus by ‖M‖ �n,d 1, and having the following properties for
every prime divisor p of q. Firstly, the leading form for gM,c will be nonsingular modulo p, and secondly, the
leading form for hM,c − γ gM,c will have degree at least 2 over Fp , with singular locus of dimension at most
max(s(h, g; p) − 1,0).

We will prove this in the next section, but we first show how we can then complete the induc-
tion step. We first note that ‖M−1‖ �n ‖M‖n−1 �n,d 1. Hence if W M(x) 	= 0 we have Mx �n 1, and
hence x �n,d 1. It follows that W M,c(y/L) vanishes unless c �n,d L and that W M,c(t) has support
t ∈ [−c0, c0]n−1 with c0 �n,d 1. We therefore write W0(t) = W M,c(c0t) so that W0(t) is supported in
[−1,1]n−1. We also observe that any j-th order partial derivative of W0 is of size O n,d(�). We may
now apply Proposition 2 with s replaced by s − 1 to find that

∑
y∈Zn−1

q|hM,c(y), (gM,c(x),q)=1

W M,c(y/L) =
∑

y∈Zn−1

q|hM,c(y), (gM,c(x),q)=1

W0
(
c−1

0 L−1y
)

= q1−nφ
(
qn−2) ∑

y∈Zn−1

W0
(
c−1

0 L−1y
)

+ O n,d
(
�Ls−1q((n−1)−(s−1))/2)

+ O n,d
(
�Ln−1 p((s−1)−(n−1)+2)/2q−1).

When we sum over all c such that W M,c(y/L) 	= 0, the error terms contribute

�n,d L�Ls−1q((n−1)−(s−1))/2 + L�Ln−1 p((s−1)−(n−1)+2)/2q−1

�n,d �Lsq(n−s)/2 + �Ln p(s−n+2)/2q−1.

Moreover we have

∑
c∈Z

∑
y∈Zn−1

W0
(
c−1

0 L−1y
) =

∑
c∈Z

∑
y∈Zn−1

W M,c(y/L)

=
∑

n

W (x/L).
x∈Z
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It will then follow that

S = q1−nφ
(
qn−2) ∑

x∈Zn

W (x/L) + O n,d
(
�Lsq(n−s)/2) + O n,d

(
�Ln p(s−n+2)/2q−1),

which suffices for our induction step.

6. Proof of Lemmas 2 and 4

Our proof of Lemma 2 is based on the following result of Heath-Brown [5, Lemma 2]:

Lemma 5. Let F (x) ∈ Fp[x1, . . . , xn] be a smooth form of degree d. For each h ∈ Fp
n, let Sh denote the affine

variety

Sh = {
x: h · ∇2 F (x) = 0

}
,

and for every non-negative integer s � n, let

Ts = {
h: dim

(
Sh(F )

)
� s

}
.

Then Ts is an affine variety, and has dimension at most n− s. Moreover it may be defined by O n,d(1) equations,
each of degree O n,d(1).

Clearly Lemma 2 follows from this estimate in conjunction with Lemma 3.
We turn now to the proof of Lemma 4. We recall that G is the leading form of g (and is assumed

to be nonsingular modulo every prime divisor of q) and that H is the leading form of h − γ g . Thus
the leading form of gM,c will be G M,0, and similarly the leading form of hM,c − γ gM,c will be HM,0,
providing that G M,0 and HM,0 do not vanish identically. We may view the variety in An(Fp) defined
by G M,0(y) = 0 as being the intersection of G M(x) = 0 with the hyperplane xn = 0. This is isomorphic
to the intersection of the variety

Gp : G(x) = 0

with (M−1x)n = 0. Thus if m is the column vector whose transpose is the bottom row of M−1, the
variety in which we are interested will be

Gm
p : G(x) = m · x = 0.

It will be convenient to use the notation s(V ) for the affine dimension of the singular locus of a
variety V . Thus to confirm the first conclusion of Lemma 4, we are hoping to show that s(Gm

p ) = 0,
and hence gM,c is nonsingular modulo p, for a suitable matrix M .

We now recall Lemma 5 of Heath-Brown [5], which states that for any prime p and any form
R(x) ∈ Fp[x1, . . . , xn] one has s(Rm

p ) � s(Rp) − 1 for all non-zero m ∈ Fn
p , where Rp and Rm

p are
defined analogously to the case for G above. Moreover there exists a non-zero form R̂ p depending
on p and R such that the degree of R̂ p is bounded in terms of n and the degree of R alone, and such
that

s
(
Rm

p

) = max
(
s(Rp) − 1,0

)
whenever p � R̂ p(m).

Thus in our case, if p � Ĝ p(m) then Gm
p will be nonsingular, since s(G) = 0 and so s(Gp) � 1. In

exactly the same way we find that if p � Ĥ p(m) then



D.R. Heath-Brown, L.B. Pierce / Journal of Number Theory 132 (2012) 1741–1757 1757
s
(
Hm

p

) = max
(
s(Hp) − 1,0

)
,

and in particular HM,0 will not vanish identically.
We therefore wish to find a vector m such that q � Ĝq(m)Ĥq(m), if q is prime, or such that

p � Ĝ p(m)Ĥ p(m) for p = p1 and p = p2 in the case q = p1 p2. However, according to Lemma 3, if
one has a non-zero polynomial f (x) ∈ Fp[x1, . . . , xn] of degree D , then

#
{

x ∈ (0, T ]n: f (x) ≡ 0 (mod p)
} �n,D T n p−1 + T n−1.

In our case we deduce that, if T �n,d 1 and q, p1, p2 �n,d 1, then there will be a vector m ∈ (0, T ]n ,
such that none of q | Ĝq(m)Ĥq(m) or p | Ĝ p(m)Ĥ p(m) holds. Clearly we may suppose that m is
primitive, since we can divide out by any common factor without affecting the non-divisibility re-
sult. Proposition 2 is of course trivial if q �n,d 1 and so we may therefore conclude that there is an
admissible primitive m �n,d 1.

Finally, to finish the proof of Lemma 4 we observe that given such a vector m there is a matrix
M1 ∈ SLn(Z) having the transpose of m as its last row, and such that ‖M1‖ �n,d . We then find that
M defined by M−1 = M1 is acceptable for Lemma 4. This completes the proof of Lemma 4.
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